際際滷

際際滷Share a Scribd company logo
BY
JISHNU V
ENGINEER
BHEL









A member of a structure which carries an axial
compressive load is called a strut
A vertical strut which is liable for failure due to
buckling or bending is called a column
Failure of a STRUT occurs due to any one of the
following stresses set up in the column
Direct stress- Due to compressive stress (for
short columns)
Buckling stress or crippling stress- Due to lateral
bending of columns
Combined direct compressive stress and
buckling stresses










Column is initially straight and the load is applied
axially
Cross section of the column is uniform through
out its length
The column material is isotropic and
homogenous
Length of the column is very large compared to
its lateral dimensions
Direct stress (compressive stress) is very small
compared to buckling stress
The column will fail by buckling alone
Self weight of the column is negligible
Theories of columns
Theories of columns
M=EI d族y/dx族
 EI d族y/dx族= -Py
d族y/dx族 + (P/EI).y=0






Solution of the differential equation, d族y/dx族
+ m族y=0 is y= Acosmx + Bsinmx
Hence solution of DE d族y/dx族 + (P/EI).y=0 is
y=Acos(P/EI)x + Bsin(P/EI)x
Boundary conditions are
 (i) When x=0, y=0
 (ii) When x=L, y=0
 Using BC (i), A=0
 Hence y= Bsin (P/EI)x
 Using BC (ii), B sin(P/EI)L=0
(P/EI)L=n, where n=1,2,3......
 Simplest case is when n=1, (P/EI)L=
 P=族EI/L族
Theories of columns


y= Bsin (P/EI)x; This means y is a sin
function of x. Hence, we can plot various
column failure modes as follows:






Consider a column AB of length L and
uniform cross sectional area, fixed at A and
free at B.
The free end will sway sideways when the
load is applied and the curvature will be
similar to that of upper half of the column
subjected to compressive load whose both
ends are hinged.
Let P be the critical load, ie crippling load at
which the column starts buckling


Let y be the deflection at a section which is x
distance away from A.


Moment due to crippling load at the section,
M= P(a-y)

M=EI d族y/dx族
 EI d族y/dx族= -P(y-a)
d族y/dx族 + (P/EI).y - Pa=0 (1)


Let 了 = (P/EI).y  Pa;
 d 了/dx= (P/EI).dy/dx
d族 了/dx族= (P/EI).d族y/dx族
d族y/dx族= (EI/P). d族 了/dx族
Eqn (1) becomes (EI/P). d族 了/dx族 + 了=0
 d族 了/dx族 + 了.(P/EI)=0



了= Acos(P/EI)x + Bsin(P/EI)x
 (P/EI).y  Pa= Acos(P/EI)x + Bsin(P/EI)x
 y=(EI/P){ Acos(P/EI)x + Bsin(P/EI)x+Pa}
Boundary conditions:
I) At x=0, y=0
II) At x=L, dy/dx=0
 Using condition (i), y=0=A + Pa; A=-Pa
 y= (EI/P){-Pacos(P/EI)x + Bsin(P/EI)x+Pa}
 Using condition (ii), dy/dx=0= B(P/EI).cos
(P/EI).L
 (P/EI).L=(2n-1) /2, n=1,2,3....
 Simplest case is when n=1; (P/EI).L= /2
 P=族EI/4L族


Consider a column AB of length L and
uniform cross sectional area, fixed at both A
and B. Let P be the critical load, ie crippling
load at which the column starts buckling






Let y be the deflection at a section which is x
distance away from B.

Moment due to crippling load at the section,
M= Mo-Py
M=EI d族y/dx族
EI d族y/dx族= Mo-Py
d族y/dx族 + (P/EI).y  Mo/EI=0 (1)


Let 了 = (P/EI).y  Mo/EI;
 d 了/dx= (P/EI).dy/dx
d族 了/dx族= (P/EI).d族y/dx族
d族y/dx族= (EI/P). d族 了/dx族
Eqn (1) becomes (EI/P). d族 了/dx族 + 了=0
d族 了/dx族 + 了.(P/EI)=0
 了= Acos(P/EI)x + Bsin(P/EI)x
(P/EI).y  Mo= Acos(P/EI)x + Bsin(P/EI)x
 y=(EI/P){ Acos(P/EI)x + Bsin(P/EI)x+Mo}
 Boundary conditions:
a) At x=0, y=0
b) At x=L, y=0
c) At x=0, dy/dx=0
 Using condition (a), y=0=A + Mo; A=-Mo
y= (EI/P){-Mocos(P/EI)x + Bsin(P/EI)x+Mo}
 Using condition (c),B=0
y= (EI/P){-Mocos(P/EI)x + Mo)
 Using condition (b), -Mocos(P/EI)L + Mo=0
cos(P/EI)L =1
(P/EI)L=2n, n=1,2,3,.....
 Simplest case is when n=1, (P/EI)L=2
 P= 4族EI/L族







Consider a column AB of length L and
uniform cross sectional area, fixed at end A
and hinged at end B
Let P be the critical load, ie crippling load at
which the column starts buckling
At the fixed end of the column, there will be a
fixed end moment=Mo
This Mo will tend to make the slop of
deflection at fixed end zero.
Inorder to balance the moment a reaction
force H will be generated at B


Let y be the deflection at a section which is x
distance away from A.


Hence the moment at section at a distance x
from fixed end, Moment M=-Py + H(L-x)
M=EI d族y/dx族
 EI d族y/dx族= -Py + H (L-x)
d族y/dx族 + (P/EI).y H (L-x)=0 (1)


Let 了 = (P/EI).y H (L-x);
d 了/dx=(P/EI)dy/dx + H
d 族了/dx族=(P/EI)d族y/dx族
 d族y/dx族= (EI/P) d 族了/dx族
Hence eqn (1) becomes (EI/P) d 族了/dx族 + 了=0
了= A cos (P/EI) x + B sin(P/EI) x
(P/EI).y H (L-x)= A cos (P/EI) x + B
sin(P/EI) x


Boundary conditions:
a) At x=0, y=0
b) At x=L, y=0
c) At x=0, dy/dx=0








Using condition (a) A = -HL
Using condition (b), 0= -HL cos {(P/EI) L} +
B sin{(P/EI) L} (2)

Using condition (c), -H= (P/EI)B (3)
Using condition eqns (2) and (3),(P/EI)Lcos{(P/EI)L} + sin(P/EI)L=0


Tan (P/EI)L=(P/EI)L

Solution of tan慮= 慮 is 慮= 4.5 radian
(P/EI)L=4.5
P/EI=20.25/L族; 2族=20.25
 P=2族EI/L族





The effective length (Le) of a given column
with given end conditions is the length of an
equivalent column of same material and cross
section hinged at its either ends and having
the value of Eulers crippling load equal to
that of the column.
Crippling load for any type of end conditions
is given by, P=族EI/Le族
The moment of inertia in the equation in
Eulers equation is the least among Ixx and
Iyy
Theories of columns
Moment of inertia I =Ak族, where A is the
cross sectional area and k is the least radius
of gyration.
 Crippling load P=族EI/Le族;
 Substituting I=Ak族, P= 族E (Ak族)/Le族
P= 族E (A)/(Le/k)族
P/A= 族E /(Le/k)族
 Le/k = Equivalent length/least radius of
gyration=Slenderness ratio




It is an empirical formula which is applicable
to all columns whether short or long
1/P=1/Pc + 1/PE
- P= Crippling load
- Pc= Crushing load= c x A
- PE= Eulers crippling load= 族EI/ Le族
- c= Ultimate crushing stress (=330 MPa
for Mild steel)
- A= Cross sectional area
P=Pc.PE/(Pc + PE)
OR P=Pc/{(Pc/PE) + 1}
 P= c.A/( c.A.Le族/族EI + 1)
 P= c.A/( c /族E x (Le/k)族 + 1)
 c /族E=留=Rankines constant
 Hence P= c.A/( 留 x (Le/k)族 + 1)
 Case-1:- If a column is short
Pc>>Pe; Hence PPc
 Case-2:- If a column is long
Pe>>Pc; Hence PPE
SL No

Material

Crushing stress
in MPa

留

1

Wrought iron

250

1/9000

2

Cast iron

550

1/1600

3

Mild steel

330

1/7500

4

Timber

50

1/750






Consider a column AB of length L and
uniform cross section fixed at A and free at B
subjected to a compressive load P at an
eccentricity of amount e

Let a be the lateral deflection at free end
Consider a section at a distance x from A
where the lateral displacement is y.





Bending moment at the section, M= P(a+e-y)
EI d族y/dx族= P(a+e-y)
d族y/dx族 + (P/EI) x y  P (a + e)/EI=0


Let 了=(P/EI) x y  P (a + e)/EI

Then d族 了/dx族=(P/EI) x d族 y/dx族
(EI/P) d族 了/dx族 + 了= 0
了= A cos {(P/EI)x} + B sin {(P/EI)x}




(P/EI).y  P(a+e)/EI= A cos {(P/EI)x} + B sin
{(P/EI)x}
Boundary conditions are
A) x=0, y=0
B) x=0,y=0
C) x=L, y=a
 Condition (A)
 A= -P(a+e)/EI
 Condition (B)
 B=0
Condition (c)
e= (a + e) x cos{(P/EI)L}
 (a+e)= e x sec {(P/EI)L}
 Maximum stress induced at a section
 Maximum stress at any section= crushing stress
+ bending stress
 Crushing stress= P/A
 Bending stress= M/Z; where Z is the section
modulus
 M= P (a+e)= P x e x sec {(P/EI)L}
 Hence max= P/A + P x e x sec {(P/EI)L}

More Related Content

Theories of columns

  • 2. A member of a structure which carries an axial compressive load is called a strut A vertical strut which is liable for failure due to buckling or bending is called a column Failure of a STRUT occurs due to any one of the following stresses set up in the column Direct stress- Due to compressive stress (for short columns) Buckling stress or crippling stress- Due to lateral bending of columns Combined direct compressive stress and buckling stresses
  • 3. Column is initially straight and the load is applied axially Cross section of the column is uniform through out its length The column material is isotropic and homogenous Length of the column is very large compared to its lateral dimensions Direct stress (compressive stress) is very small compared to buckling stress The column will fail by buckling alone Self weight of the column is negligible
  • 6. M=EI d族y/dx族 EI d族y/dx族= -Py d族y/dx族 + (P/EI).y=0 Solution of the differential equation, d族y/dx族 + m族y=0 is y= Acosmx + Bsinmx Hence solution of DE d族y/dx族 + (P/EI).y=0 is y=Acos(P/EI)x + Bsin(P/EI)x
  • 7. Boundary conditions are (i) When x=0, y=0 (ii) When x=L, y=0 Using BC (i), A=0 Hence y= Bsin (P/EI)x Using BC (ii), B sin(P/EI)L=0 (P/EI)L=n, where n=1,2,3...... Simplest case is when n=1, (P/EI)L= P=族EI/L族
  • 9. y= Bsin (P/EI)x; This means y is a sin function of x. Hence, we can plot various column failure modes as follows:
  • 10. Consider a column AB of length L and uniform cross sectional area, fixed at A and free at B. The free end will sway sideways when the load is applied and the curvature will be similar to that of upper half of the column subjected to compressive load whose both ends are hinged. Let P be the critical load, ie crippling load at which the column starts buckling
  • 11. Let y be the deflection at a section which is x distance away from A.
  • 12. Moment due to crippling load at the section, M= P(a-y) M=EI d族y/dx族 EI d族y/dx族= -P(y-a) d族y/dx族 + (P/EI).y - Pa=0 (1) Let 了 = (P/EI).y Pa; d 了/dx= (P/EI).dy/dx
  • 13. d族 了/dx族= (P/EI).d族y/dx族 d族y/dx族= (EI/P). d族 了/dx族 Eqn (1) becomes (EI/P). d族 了/dx族 + 了=0 d族 了/dx族 + 了.(P/EI)=0 了= Acos(P/EI)x + Bsin(P/EI)x (P/EI).y Pa= Acos(P/EI)x + Bsin(P/EI)x y=(EI/P){ Acos(P/EI)x + Bsin(P/EI)x+Pa}
  • 14. Boundary conditions: I) At x=0, y=0 II) At x=L, dy/dx=0 Using condition (i), y=0=A + Pa; A=-Pa y= (EI/P){-Pacos(P/EI)x + Bsin(P/EI)x+Pa} Using condition (ii), dy/dx=0= B(P/EI).cos (P/EI).L (P/EI).L=(2n-1) /2, n=1,2,3.... Simplest case is when n=1; (P/EI).L= /2 P=族EI/4L族
  • 15. Consider a column AB of length L and uniform cross sectional area, fixed at both A and B. Let P be the critical load, ie crippling load at which the column starts buckling
  • 16. Let y be the deflection at a section which is x distance away from B. Moment due to crippling load at the section, M= Mo-Py M=EI d族y/dx族
  • 17. EI d族y/dx族= Mo-Py d族y/dx族 + (P/EI).y Mo/EI=0 (1) Let 了 = (P/EI).y Mo/EI; d 了/dx= (P/EI).dy/dx d族 了/dx族= (P/EI).d族y/dx族 d族y/dx族= (EI/P). d族 了/dx族 Eqn (1) becomes (EI/P). d族 了/dx族 + 了=0
  • 18. d族 了/dx族 + 了.(P/EI)=0 了= Acos(P/EI)x + Bsin(P/EI)x (P/EI).y Mo= Acos(P/EI)x + Bsin(P/EI)x y=(EI/P){ Acos(P/EI)x + Bsin(P/EI)x+Mo} Boundary conditions: a) At x=0, y=0 b) At x=L, y=0 c) At x=0, dy/dx=0 Using condition (a), y=0=A + Mo; A=-Mo
  • 19. y= (EI/P){-Mocos(P/EI)x + Bsin(P/EI)x+Mo} Using condition (c),B=0 y= (EI/P){-Mocos(P/EI)x + Mo) Using condition (b), -Mocos(P/EI)L + Mo=0 cos(P/EI)L =1 (P/EI)L=2n, n=1,2,3,..... Simplest case is when n=1, (P/EI)L=2 P= 4族EI/L族
  • 20. Consider a column AB of length L and uniform cross sectional area, fixed at end A and hinged at end B Let P be the critical load, ie crippling load at which the column starts buckling At the fixed end of the column, there will be a fixed end moment=Mo This Mo will tend to make the slop of deflection at fixed end zero. Inorder to balance the moment a reaction force H will be generated at B
  • 21. Let y be the deflection at a section which is x distance away from A.
  • 22. Hence the moment at section at a distance x from fixed end, Moment M=-Py + H(L-x)
  • 23. M=EI d族y/dx族 EI d族y/dx族= -Py + H (L-x) d族y/dx族 + (P/EI).y H (L-x)=0 (1) Let 了 = (P/EI).y H (L-x); d 了/dx=(P/EI)dy/dx + H d 族了/dx族=(P/EI)d族y/dx族 d族y/dx族= (EI/P) d 族了/dx族
  • 24. Hence eqn (1) becomes (EI/P) d 族了/dx族 + 了=0 了= A cos (P/EI) x + B sin(P/EI) x (P/EI).y H (L-x)= A cos (P/EI) x + B sin(P/EI) x Boundary conditions: a) At x=0, y=0 b) At x=L, y=0 c) At x=0, dy/dx=0
  • 25. Using condition (a) A = -HL Using condition (b), 0= -HL cos {(P/EI) L} + B sin{(P/EI) L} (2) Using condition (c), -H= (P/EI)B (3) Using condition eqns (2) and (3),(P/EI)Lcos{(P/EI)L} + sin(P/EI)L=0
  • 26. Tan (P/EI)L=(P/EI)L Solution of tan慮= 慮 is 慮= 4.5 radian (P/EI)L=4.5 P/EI=20.25/L族; 2族=20.25 P=2族EI/L族
  • 27. The effective length (Le) of a given column with given end conditions is the length of an equivalent column of same material and cross section hinged at its either ends and having the value of Eulers crippling load equal to that of the column. Crippling load for any type of end conditions is given by, P=族EI/Le族 The moment of inertia in the equation in Eulers equation is the least among Ixx and Iyy
  • 29. Moment of inertia I =Ak族, where A is the cross sectional area and k is the least radius of gyration. Crippling load P=族EI/Le族; Substituting I=Ak族, P= 族E (Ak族)/Le族 P= 族E (A)/(Le/k)族 P/A= 族E /(Le/k)族 Le/k = Equivalent length/least radius of gyration=Slenderness ratio
  • 30. It is an empirical formula which is applicable to all columns whether short or long 1/P=1/Pc + 1/PE - P= Crippling load - Pc= Crushing load= c x A - PE= Eulers crippling load= 族EI/ Le族 - c= Ultimate crushing stress (=330 MPa for Mild steel) - A= Cross sectional area
  • 31. P=Pc.PE/(Pc + PE) OR P=Pc/{(Pc/PE) + 1} P= c.A/( c.A.Le族/族EI + 1) P= c.A/( c /族E x (Le/k)族 + 1) c /族E=留=Rankines constant Hence P= c.A/( 留 x (Le/k)族 + 1) Case-1:- If a column is short Pc>>Pe; Hence PPc Case-2:- If a column is long Pe>>Pc; Hence PPE
  • 32. SL No Material Crushing stress in MPa 留 1 Wrought iron 250 1/9000 2 Cast iron 550 1/1600 3 Mild steel 330 1/7500 4 Timber 50 1/750
  • 33. Consider a column AB of length L and uniform cross section fixed at A and free at B subjected to a compressive load P at an eccentricity of amount e Let a be the lateral deflection at free end Consider a section at a distance x from A where the lateral displacement is y.
  • 34. Bending moment at the section, M= P(a+e-y) EI d族y/dx族= P(a+e-y) d族y/dx族 + (P/EI) x y P (a + e)/EI=0
  • 35. Let 了=(P/EI) x y P (a + e)/EI Then d族 了/dx族=(P/EI) x d族 y/dx族 (EI/P) d族 了/dx族 + 了= 0 了= A cos {(P/EI)x} + B sin {(P/EI)x} (P/EI).y P(a+e)/EI= A cos {(P/EI)x} + B sin {(P/EI)x}
  • 36. Boundary conditions are A) x=0, y=0 B) x=0,y=0 C) x=L, y=a Condition (A) A= -P(a+e)/EI Condition (B) B=0
  • 37. Condition (c) e= (a + e) x cos{(P/EI)L} (a+e)= e x sec {(P/EI)L} Maximum stress induced at a section Maximum stress at any section= crushing stress + bending stress Crushing stress= P/A Bending stress= M/Z; where Z is the section modulus M= P (a+e)= P x e x sec {(P/EI)L} Hence max= P/A + P x e x sec {(P/EI)L}