This document summarizes a thesis presented to fulfill requirements for a Master's degree in Civil Engineering. The thesis investigated the load transfer mechanisms of drilled shafts in weak porous limestone through field testing and analysis. Two full-scale load tests were performed on drilled shafts constructed at a test site underlain by Aymamon limestone. Results from instrumentation during loading were analyzed to evaluate unit side shear and end bearing resistance values, and compare with empirical relationships. The testing aimed to provide a basis for a load transfer criterion for drilled shaft design in weak porous rock conditions.
1 of 30
Download to read offline
More Related Content
Thesis_Jun7_2012
1. AXIAL COMPRESSION LOAD TRANSFER MECHANISMS
OF DRILLED SHAFTS IN WEAK POROUS LIMESTONE
Presentation of thesis in partial fulfill of the requirements for the degree of
Master of Science in Civil Engineering
Jos辿 Roberto Ram鱈rez Hern叩ndez
University of Puerto Rico at Mayaguez
Advisor: Dr. Miguel A. Pando L坦pez
Mayag端ez, Puerto Rico Thursday June 7, 2012
2. Index Goals and specific aims
Introduction
Site Characterization
Field test program
Load test results
Conclusions
Acknowledgments
Mayag端ez, Puerto Rico Thursday June 7, 2012
2
3. Goals and specific aims
Provide a basis for a load transfer criterion and evaluate experimentally the
characteristics of the ultimate unit side resistance of drilled shafts in weak
porous rock of Puerto Rico
Design an experimental study of load test of drilled shafts based on high
precision instrumentation
Analyze data from the field tests and compare the prediction based on
empirical relationships
Classify and establish a geotechnical and geological characterization of the
limestone rock from La Monta単a farm in Aguadilla, PR
Mayag端ez, Puerto Rico Thursday June 7, 2012
3
5. Compressive axial bearing capacity
Mayag端ez, Puerto Rico Thursday June 7, 2012 5
Idealized load-displacement behavior (after Carter & Kulhawy, 1988)
6. Drilled shaft axial capacity
Mayag端ez, Puerto Rico Thursday June 7, 2012 6
Load transfer mechanism for socketed shaft (adapted from Zhang, 1998)
7. Unit side shear resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 7
Factors affecting the max for drilled shafts in rock
Factors related to the construction Technique
Interface roughness
Length of time borehole remains open prior to concreting
Destroyed or intact base resistance
Factors related to drilled shaft geometry
Length
Diameter
Factors related to the load test method
Rate of load applied
8. Unit side shear resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 8
Interface roughness
Wall roughness classification from Pells et al. (1980)
Roughness
Classification
Description
R1 Straight, smooth-side shaft, grooves or indentation less than 1.00 mm deep
R2 Grooves of depth 1-4 mm, width greater than 2 mm, at spacing 50 to 200 mm.
R3 Grooves of depth 4-10 mm, width > 5 mm, at spacing 50 to 200 mm.
R4 Grooves or undulations of depth greater than 10, width > 10mm, at spacing 50 to
200 mm.
Parameters for defining shaft wall roughness (after Horvath et al., 1980 and Kodikara et al., 1992)
Upper and lower bound guidelines for effective roughness adapted from (Seidel and Collingwood, 2001)
9. Unit side shear resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 9
Factors related to drilled shaft geometry
Unit side shear versus displacement for drilled shafts socket in rock with qu = 3 MPa (after Baycan, 1996)
10. Unit side shear resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 10
Factors related to the load test method
Comparison of typical Load-Displacement behavior four test procedures (adapted from Fellenius, 1975)
0
20
40
60
80
100
120
140
160
180
0 1 2 3 4 5 6 7 8
Load
Displacement
CRP
Quick
ML
Cyclic
11. Unit side shear resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 11
Reference 留 硫 C
1 Rosenberg and Jouneaux (1976) 0.34 0.51 1.05
2 Horvath (1978) 0.33 0.50 1.04
3
Horvath and Kenney (1979) lower
bound
0.21 0.50 0.65
Horvath and Kenney (1979) upper
bound
0.25 0.50 0.78
4 Meigh and Wolski (1979) 0.22 0.60 0.55
5 Reynolds and Kaderabek (1980) 0.30 1.00 0.30
6 Pells et al. (1980) R1, R2 & R3 0.40 0.50 1.26
Pells et al. (1980) R4 0.80 0.50 2.52
7 Williams et al. (1980) 0.44 0.37 1.85
8 Horvath (1982) smooth 0.20 0.50 0.63
9 Horvath (1982) roughness 0.30 0.50 0.95
10 Gupton and Logan (1984) 0.20 1.00 0.20
Reference 留 硫 C
11 Rowe and Armitage (1984) smooth 0.45 0.50 1.42
Rowe and Armitage (1984)
roughness
0.60 0.50 1.89
12 Reese and O'Neill (1987) 0.15 1.00 0.15
13 Carter and Kulhawy (1988) 0.2 0.50 0.63
14 Toh et al. (1989) 0.25 1.00 0.25
15 Kulhawy and Phoon (1993) 0.35 0.50 1.10
16 O'Neill and Reese (1999) 0.21 0.50 0.66
17
Zhang and Einstein (1998) lower
bound
0.20 0.50 0.63
Zhang and Einstein (1999) upper
bound
0.40 0.50 1.26
18 Prakoso (2002) lower bound 0.20 0.50 0.63
Prakoso (2002) upper bound 0.32 0.50 1.00
19 Kulhawy et al. (2005) 0.32 0.50 1.00
20 Turner (2006) 0.32 0.50 1.00
Summary of relations between t and qu (expanded version from ONeill et al., 1996)
12. Unit end bearing resistance
Mayag端ez, Puerto Rico Thursday June 7, 2012 12
Design Method
Teng (1962) [5-8] 1
Coates (1967) 3 1
Rowe and Armitage (1987) 2.7 1
Zhang and Einstein (1998) 4.5 1
ARGEMA (1992) [3-6.6] 0.5
Empirical relationships between and (expanded version from Zhang & Einstein, 1998)
Between 10% - 20% (Williams et al., 1980; Carter & Kulhawy, 1988)
A significant relative movement between concrete and rock is necessary to achieve
the total end bearing resistance (Qb)
Some methods proposed for predict (Qb) are based on elastic solutions and depend
on the embedment ratio (L/B) and the rate of stiffness (Ec/Er)
Theoretical base load transfer (adapted from Rowe and Armitage, 1987b)
=
13. Weak rock / IGMs definition
Mayag端ez, Puerto Rico Thursday June 7, 2012 13
Weak
rock
Weathered
and broken
rock (BS,
8004)
Indurated
soil
(Oliveira,
1993)
Soft rock
(Johnston,
1989)
Intermediate
geo-material
IGM
(FHWA, 1995)
IGM strength classification based on qu versus (adapted from Kulhawy and Phoon, 1993)
14. Summary
Mayag端ez, Puerto Rico Thursday June 7, 2012 14
Demand of loads of great magnitude
1976 2006
Range of estimation to predict Qs 86% 93%
The 27.5% geomorphology area of Puerto Rico is conformed
fro three karst zones (North, South and disperse)
$ versus capacity
0
5
10
15
20
25
30
10 30 50 70 90 110 130 150
max/Pa
qu/Pa
Rosenberg and Jouneaux (1976)
Horvath (1978)
Horvath and Kenney (1979) lower bound
Horvath and Kenney (1979) upper bound
Meigh and Wolski (1979)
Reynolds and Kaderabek (1980)
Pells et al. (1980) R1, R2 & R3
Pells et al. (1980) R4
Williams et al. (1980)
Horvath (1982) smooth
Horvath (1982) roughness
Gupton and Logan (1984)
Rowe and Armitage (1984) smooth
Rowe and Armitage (1984) roughness
Reese and O'Neill (1987)
Carter and Kulhawy (1988)
Toh et al. (1989)
Kulhawy and Phoon (1993)
O'Neill and Reese (1999)
Zhang and Einstein (1998) lower bound
Zhang and Einstein (1999) upper bound
Prakoso (2002) lower bound
Kulhawy et al. (2005)
Turner (2006)
15. Site Characterization
Mayag端ez, Puerto Rico Thursday June 7, 2012 15
Location
General location map of test site not to scale (adapted from www.mapsof.net 息 2012)
Aerial image showing location of experimental farm La Monta単a (from Google Earth 息2012)
Aerial images showing general location of test site (from Google Earth 息 2012)
16. Site Characterization
Mayag端ez, Puerto Rico Thursday June 7, 2012 16
Geology
Geological map of Puerto Rico (adapted from Renken et al., 2002)
Elevation view of the North Coast Belt of Puerto Rico (adapted from Renken et al., 2002)
Ta
17. Site Characterization
Mayag端ez, Puerto Rico Thursday June 7, 2012 17
Engineering properties
Drilled shafts load test and site investigation layout (not to scale)
Thermo-gravimetric analyses (TGA) of Aymam坦n limestone
18. Site Characterization
Mayag端ez, Puerto Rico Thursday June 7, 2012
18
Boring log DS_A2
Drilled shafts load test and site investigation layout (not to scale)
Stress-Strain diagram for Aymam坦n limestone (UCS) test
19. Field test program
Mayag端ez, Puerto Rico Thursday June 7, 2012
19
General test layout
Layout of load test arrangement
Setup and arrangement of axial compressive load test
20. Field test program
Mayag端ez, Puerto Rico Thursday June 7, 2012
20
Field test program
Layout of load test arrangement
1
2
0
10
20
30
40
50
60
70
0 50 100 150 200 250 300
time(min) Load (kips)
Duration of Load Test
0
5
10
15
20
25
30
0 50 100 150 200 250 300
time(sec) Load (kips)
Duration of Load Test
21. Field test program
Mayag端ez, Puerto Rico Thursday June 7, 2012 21
Construction of drilled shafts
Layout of load test arrangement
1
2
DS_LT 1
DS_LT 2
0
5
10
15
20
0.1 1 10 100 1000
Effectiveheightofroughness-r(mm)
qu (Mpa)
Upper Border
Bottom Border
DS_LT 1
DS_LT 2
DS_LT 1
Parameter Values Reference Roughness
Classification R3 Pells et al (1980) Medium to high
RF 0.20 Horvath et al (1980) Low to medium
hm 4.67 mm
Kodikara et al (1992) Medium
isd 5.51
re 4.67
Seidel y Collingwood
(2001)
See Figure
DS_LT 2
Parameter Values Reference Roughness
Classification R3 Pells et al (1980) Medium to high
RF 0.21 Horvath et al (1980) Low to medium
hm 4.78 mm
Kodikara et al (1992) Medium
isd 5.20
re 4.78
Seidel y Collingwood
(2001)
See Figure
Effective height roughness versus qu for drilled shafts DS_LT1 and DS_LT2
(after Seidel and Collingwood, 2001)
Summary of roughness parameters for drilled shafts DS_LT 1 and
DS_LT 2Summary of roughness parameters for drilled shafts DS_LT 1
and DS_LT 2
27. Comparative prediction - measured
Mayag端ez, Puerto Rico Thursday June 7, 2012 27
275
250
333.21
49.01
0
100
200
300
400
500
600
700
800
150 350 550 750 950 1150 1350
Drilledshaftloadcapacity-Qu(psi)
Unconfined compressive strength - qu (psi)
Carter and Kulhawy (1988)
Pells et al. (1980) R4
Limestone
DS_LT 2 (Q measured)
DS_LT 1 (Q measured)
Qu DS_LT 2 est
Qu DS_LT 1 est
Qtu e
28. Conclusions
Mayag端ez, Puerto Rico Thursday June 7, 2012 28
Shafts roughness index factor
Shaft geometry - diameter and length
Rate of load method
Classification of limestone from the Aymam坦n formation in La
Montana farm
Pells et al. (1980). other correlations
The behavior of the drilled shafts tested
Future work La Montana farm
29. Acknowledgments
Family
Geo-Cim Inc, Dywidag-Systems International, MS Drills, Structural Steel
Manufacturing, Inc.
Mr. A単eses and all the people which work in the La Monta単a farm
Augusto Ortiz, Manuel Collazo
Dr. Ricardo Ramos, Dr. Daniel Wendichansky, and Dr. Miguel Pando
Friends
PRSN Christa and Victor
Finally, thanks Ana, Andr辿 & Mateo
Puerto Rico Seismic Network (PRSN) January 17th, 2012
29
Mecanismos de transferencia de carga axial a compresion de fustes barrenados en roca caliza y porosa
a) Carga total aplicada menor a la resistencia unitaria al corte, b) Carga aplicada aumenta pero aun menora a la resitencia ultima unitaria al corte, c) carga aplicada mayor, se alcanza la resistencia unitaria al corte ultima y se genera la reaccion de la punta del pilote. d) carga ultima del pilote es la suma de la resistencia ultima al corte y la resistencia ultima de la punta o base del pilote.
En la medida en que se va aumentando la carga a compresion, la curva carga desplazamiento mostrara un comportamiento lineal al momento de alcanzar la resistencia unitaria al corte ultima, la curva ya no mostrara un comportamiento lineal y entrara en una zona de transision. Provocando un mayor desplazamiento con incrementos de carga menores hasta que ocurre un deslizamiento pleno donde la resistencia unitaria al corte ultima se ha sobre pasado.
DS_LT1 carga mas lenta, menor carga para un desplazamiento igual que para una carga rapida DS_LT2 que requiere una carga mayor.
Desplazamientos mayores para cargas mas lentas Desplazamientos menores para cargas mas rapidas.
BS 8004 Roca fracturada o meteorizada
Johnston 1989 roca blanda
Oliveira 1993 suelo endurecido
IGM 1995
Rango en psi [ ] Mpa [ ]
Costo de drilled shafts por pie de profundidad vrs diametro
Hormigon ($105/yrd3).
Roca sedimentaria 23.5 millones de anos, era cenozoica terciaria (Ta), edad del mioceno temprano. 88% Ca,
Porosidad 41.17%, relacion de vanos de .7, peso especifico seco 102 pcf,
Carga maxima por pie de profundidad comparar con velocidad de aplicacion de carga.