際際滷

際際滷Share a Scribd company logo
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> me
$name
[1] "Takashi Kitano"
$twitter
[1] "@kashitan"
$work_in
[1] " "
念指の舞氏
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
?
?
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> head(talks_en)
# A tibble: 6 x 2
title_en transcript_en
<chr> <chr>
1 Fake videos of real people ! and how to ´ Look at these images. Now´
2 How to build synthetic DNA and send it a´ "Alright, let me tell you´
3 Technology that knows what you're feeling "What happens when techno´
4 How to get empowered, not overpowered, b´ "After 13.8 billion years´
5 Where joy hides and how to find it "It's 2008, and I'm just ´
6 ""You Found Me"" (Cello music starts) You ´
> talks_en %>% tidytext::unnest_tokens(word, transcript_en)
> talks_en %>% tidytext::unnest_tokens(word, transcript_en)
# A tibble: 9,840 x 2
title_en word
<chr> <chr>
1 Fake videos of real people ! and how to spot them look
2 Fake videos of real people ! and how to spot them at
3 Fake videos of real people ! and how to spot them these
4 Fake videos of real people ! and how to spot them images
5 Fake videos of real people ! and how to spot them now
6 Fake videos of real people ! and how to spot them tell
7 Fake videos of real people ! and how to spot them me
8 Fake videos of real people ! and how to spot them which
9 Fake videos of real people ! and how to spot them obama
10 Fake videos of real people ! and how to spot them here
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> talks_ja %>% head()
# A tibble: 6 x 2
title_ja transcript_ja
<chr> <chr>
1 ´ ´
2 DNA ´ ´
3 ´
4 AI AI ´ 138 ´
5 2008 ´
6 You Found Me ´ ´
> talks_ja %>% tidytext::unnest_tokens(word, transcript_ja)
# A tibble: 6,266,182 x 2
title_ja word
<chr> <chr>
1
2
3
4
5
6
# ... with 6,266,172 more rows
からのF
> talks_ja %>% tidytext::unnest_tokens(word, transcript_ja)
# A tibble: 6,266,182 x 2
title_ja word
<chr> <chr>
1
2
3
4
5
6
# ... with 6,266,172 more rows
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> mecab_result <- talks_ja %>%
+ RMeCabDF("transcript_ja", 1)
> glimpse(mecab_result)
List of 1
$ : Named chr [1:1445] " " " " " " " " ...
..- attr(*, "names")= chr [1:1445] " " " " " " " " ...
> mecab_result <- talks_ja %>%
+ as.data.frame() %>%
+ RMeCabDF("transcript_ja", 1)
> glimpse(mecab_result)
List of 2551
$ : Named chr [1:1445] " " " " " " " " ...
..- attr(*, "names")= chr [1:1445] " " " " " " " " ...
$ : Named chr [1:2903] " " " " " " " " ...
..- attr(*, "names")= chr [1:2903] " " " " " " " " ...
$ : Named chr [1:2208] " " " " " " " " ...
..- attr(*, "names")= chr [1:2208] " " " " " " " " ...
> # tibble 1 tibble
> class(talks_ja[, "transcript_ja"])
[1] "tbl_df" "tbl" "data.frame"
> # 1
> length(talks_ja[, "transcript_ja"])
[1] 1
> # data.frame 1
> class(as.data.frame(talks_ja)[, "transcript_ja"])
[1] "character"
> #
> length(as.data.frame(talks_ja)[, "transcript_ja"])
[1] 2551
> tokens_ja <- purrr::pmap_df(list(nv = mecab_result,
+ title = talks_ja$title_ja),
+ function(nv, title){
+ tibble(title = title,
+ word = nv,
+ hinshi = names(nv))
+ })
> tokens_ja
# A tibble: 6,483,469 x 3
title word hinshi
<chr> <chr> <chr>
1
2
3
4
5
6
# ... with 6,483,463 more rows
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> bigram_en <- talks_en %>% select(title_en, transcript_en) %>%
+ tidytext::unnest_tokens(bigram, transcript_en, token = "ngrams",
n = 2)
> head(bigram_en)
# A tibble: 6 x 2
title_en bigram
<chr> <chr>
1 ""(Nothing But) Flowers" with string quartet" music here
2 ""(Nothing But) Flowers" with string quartet" here we
3 ""(Nothing But) Flowers" with string quartet" we stand
4 ""(Nothing But) Flowers" with string quartet" stand like
5 ""(Nothing But) Flowers" with string quartet" like an
6 ""(Nothing But) Flowers" with string quartet" an adam
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> bigram_ja <- talks_ja %>%
+ as.data.frame() %>%
+ docDF(col = "transcript_ja", type=1, N = 2)
number of extracted terms = 898167
now making a data frame. wait a while!
> bigram_ja.bk %>%
+ select(TERM, POS1, Row1, Row2, Row3, Row4, Row5, Row6, Row7,
Row8, Row9) %>%
+ head()
TERM POS1 Row1 Row2 Row3 Row4 Row5 Row6 Row7 Row8 Row9
1 !-( - 0 0 0 0 0 0 0 0 0
2 !-7 - 0 0 0 0 0 0 0 0 0
3 !-Google - 0 0 0 0 0 0 0 0 0
4 !-Little - 0 0 0 0 0 0 0 0 0
5 !-Time - 0 0 0 0 0 0 0 0 0
6 !-Toonchi - 0 0 0 0 0 0 0 0 0
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
> bigram_ja <- tokens_ja %>%
+ group_by(title) %>%
+ rename(word1 = word,
+ hinshi1 = hinshi) %>%
+ mutate(word2 = lead(word1),
+ hinshi2 = lead(hinshi1)) %>%
+ ungroup() %>%
+ filter(!is.na(word2)) %>%
+ select(title, word1, word2, hinshi1, hinshi2)
> bigram_ja
# A tibble: 6,480,920 x 5
title word1 word2 hinshi1 hinshi2
<chr> <chr> <chr> <chr> <chr>
1
2
3
4
5
6
7
8
# ... with 6,480,912 more rows
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂
?
?
距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂

More Related Content

What's hot (20)

竣蚊ベイズと安粥鴛遺
竣蚊ベイズと安粥鴛遺竣蚊ベイズと安粥鴛遺
竣蚊ベイズと安粥鴛遺
Hiroshi Shimizu
?
R seminar on igraph
R seminar on igraphR seminar on igraph
R seminar on igraph
Kazuhiro Takemoto
?
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘TR Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
nocchi_airport
?
癖俳なクラスタ方を字亠議に箔める返隈の府初
癖俳なクラスタ方を字亠議に箔める返隈の府初癖俳なクラスタ方を字亠議に箔める返隈の府初
癖俳なクラスタ方を字亠議に箔める返隈の府初
Takeshi Mikami
?
ブラックボックス恷癖晒とその鮄
ブラックボックス恷癖晒とその鮄ブラックボックス恷癖晒とその鮄
ブラックボックス恷癖晒とその鮄
gree_tech
?
檎て?竣蚊ヘ?イス?モテ?ル
檎て?竣蚊ヘ?イス?モテ?ル檎て?竣蚊ヘ?イス?モテ?ル
檎て?竣蚊ヘ?イス?モテ?ル
Yohei Sato
?
ハ?イオインフォマティクスて?gYノ`トを函ろう
ハ?イオインフォマティクスて?gYノ`トを函ろうハ?イオインフォマティクスて?gYノ`トを函ろう
ハ?イオインフォマティクスて?gYノ`トを函ろう
Masahiro Kasahara
?
屎箆珸v蛍裂
屎箆珸v蛍裂屎箆珸v蛍裂
屎箆珸v蛍裂
Akisato Kimura
?
3蛍でわかる謹邨峅爾肇妊リクレ蛍下
3蛍でわかる謹邨峅爾肇妊リクレ蛍下3蛍でわかる謹邨峅爾肇妊リクレ蛍下
3蛍でわかる謹邨峅爾肇妊リクレ蛍下
Junya Saito
?
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
Shintaro Fukushima
?
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
Hiroshi Shimizu
?
v方デ`タ盾裂の古勣とその圭隈
v方デ`タ盾裂の古勣とその圭隈v方デ`タ盾裂の古勣とその圭隈
v方デ`タ盾裂の古勣とその圭隈
Hidetoshi Matsui
?
及4指DARM茶氏 (夛圭殻塀モデリング)
及4指DARM茶氏 (夛圭殻塀モデリング)及4指DARM茶氏 (夛圭殻塀モデリング)
及4指DARM茶氏 (夛圭殻塀モデリング)
Yoshitake Takebayashi
?
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
Kenichi Hironaka
?
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
Classi.corp
?
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
daiki hojo
?
皆岳温稼コ`ドの慕き圭 嶄雫園
皆岳温稼コ`ドの慕き圭 嶄雫園皆岳温稼コ`ドの慕き圭 嶄雫園
皆岳温稼コ`ドの慕き圭 嶄雫園
Hiroshi Shimizu
?
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
RyuichiKanoh
?
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
Takashi J OZAKI
?
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
takehikoihayashi
?
竣蚊ベイズと安粥鴛遺
竣蚊ベイズと安粥鴛遺竣蚊ベイズと安粥鴛遺
竣蚊ベイズと安粥鴛遺
Hiroshi Shimizu
?
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘TR Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
R Markdownによるドキュメント伏撹と バ`ジョン砿尖秘T
nocchi_airport
?
癖俳なクラスタ方を字亠議に箔める返隈の府初
癖俳なクラスタ方を字亠議に箔める返隈の府初癖俳なクラスタ方を字亠議に箔める返隈の府初
癖俳なクラスタ方を字亠議に箔める返隈の府初
Takeshi Mikami
?
ブラックボックス恷癖晒とその鮄
ブラックボックス恷癖晒とその鮄ブラックボックス恷癖晒とその鮄
ブラックボックス恷癖晒とその鮄
gree_tech
?
檎て?竣蚊ヘ?イス?モテ?ル
檎て?竣蚊ヘ?イス?モテ?ル檎て?竣蚊ヘ?イス?モテ?ル
檎て?竣蚊ヘ?イス?モテ?ル
Yohei Sato
?
ハ?イオインフォマティクスて?gYノ`トを函ろう
ハ?イオインフォマティクスて?gYノ`トを函ろうハ?イオインフォマティクスて?gYノ`トを函ろう
ハ?イオインフォマティクスて?gYノ`トを函ろう
Masahiro Kasahara
?
3蛍でわかる謹邨峅爾肇妊リクレ蛍下
3蛍でわかる謹邨峅爾肇妊リクレ蛍下3蛍でわかる謹邨峅爾肇妊リクレ蛍下
3蛍でわかる謹邨峅爾肇妊リクレ蛍下
Junya Saito
?
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
檎における寄号庁デ`タ盾裂(及10指意看一霞看安艶恢珂庄稼庄稼乙)
Shintaro Fukushima
?
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
遺馨糸壊岳温稼姻秘壇と姻艶糸顎界艶喝壊顎馨()盾h
Hiroshi Shimizu
?
v方デ`タ盾裂の古勣とその圭隈
v方デ`タ盾裂の古勣とその圭隈v方デ`タ盾裂の古勣とその圭隈
v方デ`タ盾裂の古勣とその圭隈
Hidetoshi Matsui
?
及4指DARM茶氏 (夛圭殻塀モデリング)
及4指DARM茶氏 (夛圭殻塀モデリング)及4指DARM茶氏 (夛圭殻塀モデリング)
及4指DARM茶氏 (夛圭殻塀モデリング)
Yoshitake Takebayashi
?
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
局x確健广仝ベイズyの尖と圭隈々5.1 マルコフBiモンテカルロ隈
Kenichi Hironaka
?
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
沿霞馨界と沿霞壊岳温稼でベイズ容協してみた三
Classi.corp
?
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
あなたの伉に京姻庄糸乙艶皆温馨沿鉛庄稼乙
daiki hojo
?
皆岳温稼コ`ドの慕き圭 嶄雫園
皆岳温稼コ`ドの慕き圭 嶄雫園皆岳温稼コ`ドの慕き圭 嶄雫園
皆岳温稼コ`ドの慕き圭 嶄雫園
Hiroshi Shimizu
?
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
拘塘ブ`スティングの児Aと恷仟の嗜 (MIRU2020 Tutorial)
RyuichiKanoh
?
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
檎によるやさしい由柴僥及20嫗仝紛薦蛍裂によるサンプルサイズの畳協々
Takashi J OZAKI
?
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
〆バックドア児覆糧訝邸撮斥格冩冩梢鹿氏
takehikoihayashi
?

Similar to 距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂 (20)

PLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
PLOTCON NYC: Behind Every Great Plot There's a Great Deal of WranglingPLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
PLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
Plotly
?
pa-pe-pi-po-pure Python Text Processing
pa-pe-pi-po-pure Python Text Processingpa-pe-pi-po-pure Python Text Processing
pa-pe-pi-po-pure Python Text Processing
Rodrigo Senra
?
綜才から云欒す
綜才から云欒す綜才から云欒す
綜才から云欒す
Takashi Kitano
?
Pre-Bootcamp introduction to Elixir
Pre-Bootcamp introduction to ElixirPre-Bootcamp introduction to Elixir
Pre-Bootcamp introduction to Elixir
Pawe? Dawczak
?
Learn 90% of Python in 90 Minutes
Learn 90% of Python in 90 MinutesLearn 90% of Python in 90 Minutes
Learn 90% of Python in 90 Minutes
Matt Harrison
?
Τα Πολ? Βασικ? για την Python
Τα Πολ? Βασικ? για την PythonΤα Πολ? Βασικ? για την Python
Τα Πολ? Βασικ? για την Python
Moses Boudourides
?
Derrubando mitos em Python
Derrubando mitos em PythonDerrubando mitos em Python
Derrubando mitos em Python
Denis Costa
?
Part 1-Support Java 17 Certif Pr Youssfi.pdf
Part 1-Support Java 17 Certif Pr Youssfi.pdfPart 1-Support Java 17 Certif Pr Youssfi.pdf
Part 1-Support Java 17 Certif Pr Youssfi.pdf
L?t Fi
?
Elixir
ElixirElixir
Elixir
Andrew Babichev
?
Beautiful python - PyLadies
Beautiful python - PyLadiesBeautiful python - PyLadies
Beautiful python - PyLadies
Alicia P└rez
?
Palestra sobre Collections com Python
Palestra sobre Collections com PythonPalestra sobre Collections com Python
Palestra sobre Collections com Python
pugpe
?
R programming language
R programming languageR programming language
R programming language
Alberto Minetti
?
M12 random forest-part01
M12 random forest-part01M12 random forest-part01
M12 random forest-part01
Raman Kannan
?
R is a very flexible and powerful programming language, as well as a.pdf
R is a very flexible and powerful programming language, as well as a.pdfR is a very flexible and powerful programming language, as well as a.pdf
R is a very flexible and powerful programming language, as well as a.pdf
annikasarees
?
Text mining and social network analysis of twitter data part 1
Text mining and social network analysis of twitter data part 1Text mining and social network analysis of twitter data part 1
Text mining and social network analysis of twitter data part 1
Johan Blomme
?
Python 1
Python 1Python 1
Python 1
Ramin Najjarbashi
?
Py ohio
Py ohioPy ohio
Py ohio
Nate Taggart
?
Helvetia
HelvetiaHelvetia
Helvetia
ESUG
?
Easy HTML Tables in RStudio with Tabyl and kableExtra
Easy HTML Tables in RStudio with Tabyl and kableExtraEasy HTML Tables in RStudio with Tabyl and kableExtra
Easy HTML Tables in RStudio with Tabyl and kableExtra
Barry DeCicco
?
檎ではじめる意敬庄岳岳艶姻盾裂
檎ではじめる意敬庄岳岳艶姻盾裂檎ではじめる意敬庄岳岳艶姻盾裂
檎ではじめる意敬庄岳岳艶姻盾裂
Takeshi Arabiki
?
PLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
PLOTCON NYC: Behind Every Great Plot There's a Great Deal of WranglingPLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
PLOTCON NYC: Behind Every Great Plot There's a Great Deal of Wrangling
Plotly
?
pa-pe-pi-po-pure Python Text Processing
pa-pe-pi-po-pure Python Text Processingpa-pe-pi-po-pure Python Text Processing
pa-pe-pi-po-pure Python Text Processing
Rodrigo Senra
?
Pre-Bootcamp introduction to Elixir
Pre-Bootcamp introduction to ElixirPre-Bootcamp introduction to Elixir
Pre-Bootcamp introduction to Elixir
Pawe? Dawczak
?
Learn 90% of Python in 90 Minutes
Learn 90% of Python in 90 MinutesLearn 90% of Python in 90 Minutes
Learn 90% of Python in 90 Minutes
Matt Harrison
?
Τα Πολ? Βασικ? για την Python
Τα Πολ? Βασικ? για την PythonΤα Πολ? Βασικ? για την Python
Τα Πολ? Βασικ? για την Python
Moses Boudourides
?
Derrubando mitos em Python
Derrubando mitos em PythonDerrubando mitos em Python
Derrubando mitos em Python
Denis Costa
?
Part 1-Support Java 17 Certif Pr Youssfi.pdf
Part 1-Support Java 17 Certif Pr Youssfi.pdfPart 1-Support Java 17 Certif Pr Youssfi.pdf
Part 1-Support Java 17 Certif Pr Youssfi.pdf
L?t Fi
?
Beautiful python - PyLadies
Beautiful python - PyLadiesBeautiful python - PyLadies
Beautiful python - PyLadies
Alicia P└rez
?
Palestra sobre Collections com Python
Palestra sobre Collections com PythonPalestra sobre Collections com Python
Palestra sobre Collections com Python
pugpe
?
M12 random forest-part01
M12 random forest-part01M12 random forest-part01
M12 random forest-part01
Raman Kannan
?
R is a very flexible and powerful programming language, as well as a.pdf
R is a very flexible and powerful programming language, as well as a.pdfR is a very flexible and powerful programming language, as well as a.pdf
R is a very flexible and powerful programming language, as well as a.pdf
annikasarees
?
Text mining and social network analysis of twitter data part 1
Text mining and social network analysis of twitter data part 1Text mining and social network analysis of twitter data part 1
Text mining and social network analysis of twitter data part 1
Johan Blomme
?
Helvetia
HelvetiaHelvetia
Helvetia
ESUG
?
Easy HTML Tables in RStudio with Tabyl and kableExtra
Easy HTML Tables in RStudio with Tabyl and kableExtraEasy HTML Tables in RStudio with Tabyl and kableExtra
Easy HTML Tables in RStudio with Tabyl and kableExtra
Barry DeCicco
?
檎ではじめる意敬庄岳岳艶姻盾裂
檎ではじめる意敬庄岳岳艶姻盾裂檎ではじめる意敬庄岳岳艶姻盾裂
檎ではじめる意敬庄岳岳艶姻盾裂
Takeshi Arabiki
?

More from Takashi Kitano (12)

挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
Takashi Kitano
?
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
Takashi Kitano
?
20170923 excelユ`サ?`のためのr秘T
20170923 excelユ`サ?`のためのr秘T20170923 excelユ`サ?`のためのr秘T
20170923 excelユ`サ?`のためのr秘T
Takashi Kitano
?
馨恰稼艶岳で裸嫖る侮蚊僥楼
馨恰稼艶岳で裸嫖る侮蚊僥楼馨恰稼艶岳で裸嫖る侮蚊僥楼
馨恰稼艶岳で裸嫖る侮蚊僥楼
Takashi Kitano
?
辛晒巓xのM晒がヤヴァイ ?2016?
辛晒巓xのM晒がヤヴァイ ?2016?辛晒巓xのM晒がヤヴァイ ?2016?
辛晒巓xのM晒がヤヴァイ ?2016?
Takashi Kitano
?
檎によるウイスキ`蛍裂
檎によるウイスキ`蛍裂檎によるウイスキ`蛍裂
檎によるウイスキ`蛍裂
Takashi Kitano
?
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
Takashi Kitano
?
20140625 rて?のテ?`タ蛍裂() for_tokyor
20140625 rて?のテ?`タ蛍裂() for_tokyor20140625 rて?のテ?`タ蛍裂() for_tokyor
20140625 rて?のテ?`タ蛍裂() for_tokyor
Takashi Kitano
?
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
Takashi Kitano
?
20150329 tokyo r47
20150329 tokyo r4720150329 tokyo r47
20150329 tokyo r47
Takashi Kitano
?
20140920 tokyo r43
20140920 tokyo r4320140920 tokyo r43
20140920 tokyo r43
Takashi Kitano
?
Google's r style guideのすfめ
Google's r style guideのすfめGoogle's r style guideのすfめ
Google's r style guideのすfめ
Takashi Kitano
?
挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
挫みの晩云焼を廚澆燭ぃ ?さけのわデ`タで冥す徭蛍挫みの焼??
Takashi Kitano
?
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
距壊鞄庄稼霞姶と距鉛艶温韓鉛艶岳姶による仇蹈▲廛蠖k意庄沿壊
Takashi Kitano
?
20170923 excelユ`サ?`のためのr秘T
20170923 excelユ`サ?`のためのr秘T20170923 excelユ`サ?`のためのr秘T
20170923 excelユ`サ?`のためのr秘T
Takashi Kitano
?
馨恰稼艶岳で裸嫖る侮蚊僥楼
馨恰稼艶岳で裸嫖る侮蚊僥楼馨恰稼艶岳で裸嫖る侮蚊僥楼
馨恰稼艶岳で裸嫖る侮蚊僥楼
Takashi Kitano
?
辛晒巓xのM晒がヤヴァイ ?2016?
辛晒巓xのM晒がヤヴァイ ?2016?辛晒巓xのM晒がヤヴァイ ?2016?
辛晒巓xのM晒がヤヴァイ ?2016?
Takashi Kitano
?
檎によるウイスキ`蛍裂
檎によるウイスキ`蛍裂檎によるウイスキ`蛍裂
檎によるウイスキ`蛍裂
Takashi Kitano
?
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
20160311 児Aからのヘ?イス?y僥i氏及6嫗 巷_ver
Takashi Kitano
?
20140625 rて?のテ?`タ蛍裂() for_tokyor
20140625 rて?のテ?`タ蛍裂() for_tokyor20140625 rて?のテ?`タ蛍裂() for_tokyor
20140625 rて?のテ?`タ蛍裂() for_tokyor
Takashi Kitano
?
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
鉛顎恢姻庄糸温岳艶パッケ`ジ秘壇
Takashi Kitano
?
Google's r style guideのすfめ
Google's r style guideのすfめGoogle's r style guideのすfめ
Google's r style guideのすfめ
Takashi Kitano
?

Recently uploaded (20)

PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
Stanislava Tropcheva
?
Elevate Your Space with Premium Design Services from NInterior Design
Elevate Your Space with Premium Design Services from NInterior DesignElevate Your Space with Premium Design Services from NInterior Design
Elevate Your Space with Premium Design Services from NInterior Design
Ninterior Design
?
Scaling & Measurement, Classification, and Types
Scaling & Measurement, Classification, and TypesScaling & Measurement, Classification, and Types
Scaling & Measurement, Classification, and Types
srikanthmrt
?
Optimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with CalciteOptimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with Calcite
Stamatis Zampetakis
?
Updated Willow 2025 Media Deck_Updated010325.pdf
Updated Willow 2025 Media Deck_Updated010325.pdfUpdated Willow 2025 Media Deck_Updated010325.pdf
Updated Willow 2025 Media Deck_Updated010325.pdf
tangramcommunication
?
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Deddy Rahman
?
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Doug Ortiz
?
Analyzing Consumer Spending Trends and Purchasing Behavior
Analyzing Consumer Spending Trends and Purchasing BehaviorAnalyzing Consumer Spending Trends and Purchasing Behavior
Analyzing Consumer Spending Trends and Purchasing Behavior
omololaokeowo1
?
The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
?????__Cubase Pro Crack Full Activativated 2025
?????__Cubase Pro Crack Full Activativated 2025?????__Cubase Pro Crack Full Activativated 2025
?????__Cubase Pro Crack Full Activativated 2025
abrishhayat858
?
Final_Geographical_Analysis_9-1-10 (1).pdf
Final_Geographical_Analysis_9-1-10 (1).pdfFinal_Geographical_Analysis_9-1-10 (1).pdf
Final_Geographical_Analysis_9-1-10 (1).pdf
OmkarPatilPatodekar
?
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
?
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
Doug Ortiz
?
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
?
際際滷 perkenalan dengan dasar MongoDB-query
際際滷 perkenalan dengan dasar MongoDB-query際際滷 perkenalan dengan dasar MongoDB-query
際際滷 perkenalan dengan dasar MongoDB-query
amazaza49
?
Lesson 6- Data Visualization and Reporting.pptx
Lesson 6- Data Visualization and Reporting.pptxLesson 6- Data Visualization and Reporting.pptx
Lesson 6- Data Visualization and Reporting.pptx
1045858
?
2024 Archive - Zsolt Nemeth web archivum
2024 Archive - Zsolt Nemeth web archivum2024 Archive - Zsolt Nemeth web archivum
2024 Archive - Zsolt Nemeth web archivum
Zsolt Nemeth
?
Plant Disease Prediction with Image Classification using CNN.pdf
Plant Disease Prediction with Image Classification using CNN.pdfPlant Disease Prediction with Image Classification using CNN.pdf
Plant Disease Prediction with Image Classification using CNN.pdf
Theekshana Wanniarachchi
?
Cost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheet
supreetk82004
?
PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
PRGTUG Meeting: Lost in Data? Let's Chart the Way Out!
Stanislava Tropcheva
?
Elevate Your Space with Premium Design Services from NInterior Design
Elevate Your Space with Premium Design Services from NInterior DesignElevate Your Space with Premium Design Services from NInterior Design
Elevate Your Space with Premium Design Services from NInterior Design
Ninterior Design
?
Scaling & Measurement, Classification, and Types
Scaling & Measurement, Classification, and TypesScaling & Measurement, Classification, and Types
Scaling & Measurement, Classification, and Types
srikanthmrt
?
Optimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with CalciteOptimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with Calcite
Stamatis Zampetakis
?
Updated Willow 2025 Media Deck_Updated010325.pdf
Updated Willow 2025 Media Deck_Updated010325.pdfUpdated Willow 2025 Media Deck_Updated010325.pdf
Updated Willow 2025 Media Deck_Updated010325.pdf
tangramcommunication
?
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024Monitoring Imam Ririn di Pilkada Kota Depok 2024
Monitoring Imam Ririn di Pilkada Kota Depok 2024
Deddy Rahman
?
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Guide to Retrieval-Augmented Generation (RAG) and Contextual Augmented Genera...
Doug Ortiz
?
Analyzing Consumer Spending Trends and Purchasing Behavior
Analyzing Consumer Spending Trends and Purchasing BehaviorAnalyzing Consumer Spending Trends and Purchasing Behavior
Analyzing Consumer Spending Trends and Purchasing Behavior
omololaokeowo1
?
The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
?????__Cubase Pro Crack Full Activativated 2025
?????__Cubase Pro Crack Full Activativated 2025?????__Cubase Pro Crack Full Activativated 2025
?????__Cubase Pro Crack Full Activativated 2025
abrishhayat858
?
Final_Geographical_Analysis_9-1-10 (1).pdf
Final_Geographical_Analysis_9-1-10 (1).pdfFinal_Geographical_Analysis_9-1-10 (1).pdf
Final_Geographical_Analysis_9-1-10 (1).pdf
OmkarPatilPatodekar
?
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
?
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
50-Database Efficiency 101 Understanding and Implementing PostgreSQL Indexes....
Doug Ortiz
?
Design Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AIDesign Data Model Objects for Analytics, Activation, and AI
Design Data Model Objects for Analytics, Activation, and AI
aaronmwinters
?
際際滷 perkenalan dengan dasar MongoDB-query
際際滷 perkenalan dengan dasar MongoDB-query際際滷 perkenalan dengan dasar MongoDB-query
際際滷 perkenalan dengan dasar MongoDB-query
amazaza49
?
Lesson 6- Data Visualization and Reporting.pptx
Lesson 6- Data Visualization and Reporting.pptxLesson 6- Data Visualization and Reporting.pptx
Lesson 6- Data Visualization and Reporting.pptx
1045858
?
2024 Archive - Zsolt Nemeth web archivum
2024 Archive - Zsolt Nemeth web archivum2024 Archive - Zsolt Nemeth web archivum
2024 Archive - Zsolt Nemeth web archivum
Zsolt Nemeth
?
Plant Disease Prediction with Image Classification using CNN.pdf
Plant Disease Prediction with Image Classification using CNN.pdfPlant Disease Prediction with Image Classification using CNN.pdf
Plant Disease Prediction with Image Classification using CNN.pdf
Theekshana Wanniarachchi
?
Cost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheetCost sheet. with basics and formats of sheet
Cost sheet. with basics and formats of sheet
supreetk82004
?

距岳庄糸霞岳艶恰岳姶と距檎珂艶遺温恢姶によるモダンな晩云囂テキスト蛍裂

  • 2. > me $name [1] "Takashi Kitano" $twitter [1] "@kashitan" $work_in [1] " "
  • 5. ? ?
  • 7. > head(talks_en) # A tibble: 6 x 2 title_en transcript_en <chr> <chr> 1 Fake videos of real people ! and how to ´ Look at these images. Now´ 2 How to build synthetic DNA and send it a´ "Alright, let me tell you´ 3 Technology that knows what you're feeling "What happens when techno´ 4 How to get empowered, not overpowered, b´ "After 13.8 billion years´ 5 Where joy hides and how to find it "It's 2008, and I'm just ´ 6 ""You Found Me"" (Cello music starts) You ´
  • 8. > talks_en %>% tidytext::unnest_tokens(word, transcript_en)
  • 9. > talks_en %>% tidytext::unnest_tokens(word, transcript_en) # A tibble: 9,840 x 2 title_en word <chr> <chr> 1 Fake videos of real people ! and how to spot them look 2 Fake videos of real people ! and how to spot them at 3 Fake videos of real people ! and how to spot them these 4 Fake videos of real people ! and how to spot them images 5 Fake videos of real people ! and how to spot them now 6 Fake videos of real people ! and how to spot them tell 7 Fake videos of real people ! and how to spot them me 8 Fake videos of real people ! and how to spot them which 9 Fake videos of real people ! and how to spot them obama 10 Fake videos of real people ! and how to spot them here
  • 11. > talks_ja %>% head() # A tibble: 6 x 2 title_ja transcript_ja <chr> <chr> 1 ´ ´ 2 DNA ´ ´ 3 ´ 4 AI AI ´ 138 ´ 5 2008 ´ 6 You Found Me ´ ´
  • 12. > talks_ja %>% tidytext::unnest_tokens(word, transcript_ja) # A tibble: 6,266,182 x 2 title_ja word <chr> <chr> 1 2 3 4 5 6 # ... with 6,266,172 more rows
  • 14. > talks_ja %>% tidytext::unnest_tokens(word, transcript_ja) # A tibble: 6,266,182 x 2 title_ja word <chr> <chr> 1 2 3 4 5 6 # ... with 6,266,172 more rows
  • 18. > mecab_result <- talks_ja %>% + RMeCabDF("transcript_ja", 1) > glimpse(mecab_result) List of 1 $ : Named chr [1:1445] " " " " " " " " ... ..- attr(*, "names")= chr [1:1445] " " " " " " " " ...
  • 19. > mecab_result <- talks_ja %>% + as.data.frame() %>% + RMeCabDF("transcript_ja", 1) > glimpse(mecab_result) List of 2551 $ : Named chr [1:1445] " " " " " " " " ... ..- attr(*, "names")= chr [1:1445] " " " " " " " " ... $ : Named chr [1:2903] " " " " " " " " ... ..- attr(*, "names")= chr [1:2903] " " " " " " " " ... $ : Named chr [1:2208] " " " " " " " " ... ..- attr(*, "names")= chr [1:2208] " " " " " " " " ...
  • 20. > # tibble 1 tibble > class(talks_ja[, "transcript_ja"]) [1] "tbl_df" "tbl" "data.frame" > # 1 > length(talks_ja[, "transcript_ja"]) [1] 1 > # data.frame 1 > class(as.data.frame(talks_ja)[, "transcript_ja"]) [1] "character" > # > length(as.data.frame(talks_ja)[, "transcript_ja"]) [1] 2551
  • 21. > tokens_ja <- purrr::pmap_df(list(nv = mecab_result, + title = talks_ja$title_ja), + function(nv, title){ + tibble(title = title, + word = nv, + hinshi = names(nv)) + })
  • 22. > tokens_ja # A tibble: 6,483,469 x 3 title word hinshi <chr> <chr> <chr> 1 2 3 4 5 6 # ... with 6,483,463 more rows
  • 24. > bigram_en <- talks_en %>% select(title_en, transcript_en) %>% + tidytext::unnest_tokens(bigram, transcript_en, token = "ngrams", n = 2) > head(bigram_en) # A tibble: 6 x 2 title_en bigram <chr> <chr> 1 ""(Nothing But) Flowers" with string quartet" music here 2 ""(Nothing But) Flowers" with string quartet" here we 3 ""(Nothing But) Flowers" with string quartet" we stand 4 ""(Nothing But) Flowers" with string quartet" stand like 5 ""(Nothing But) Flowers" with string quartet" like an 6 ""(Nothing But) Flowers" with string quartet" an adam
  • 26. > bigram_ja <- talks_ja %>% + as.data.frame() %>% + docDF(col = "transcript_ja", type=1, N = 2) number of extracted terms = 898167 now making a data frame. wait a while!
  • 27. > bigram_ja.bk %>% + select(TERM, POS1, Row1, Row2, Row3, Row4, Row5, Row6, Row7, Row8, Row9) %>% + head() TERM POS1 Row1 Row2 Row3 Row4 Row5 Row6 Row7 Row8 Row9 1 !-( - 0 0 0 0 0 0 0 0 0 2 !-7 - 0 0 0 0 0 0 0 0 0 3 !-Google - 0 0 0 0 0 0 0 0 0 4 !-Little - 0 0 0 0 0 0 0 0 0 5 !-Time - 0 0 0 0 0 0 0 0 0 6 !-Toonchi - 0 0 0 0 0 0 0 0 0
  • 29. > bigram_ja <- tokens_ja %>% + group_by(title) %>% + rename(word1 = word, + hinshi1 = hinshi) %>% + mutate(word2 = lead(word1), + hinshi2 = lead(hinshi1)) %>% + ungroup() %>% + filter(!is.na(word2)) %>% + select(title, word1, word2, hinshi1, hinshi2)
  • 30. > bigram_ja # A tibble: 6,480,920 x 5 title word1 word2 hinshi1 hinshi2 <chr> <chr> <chr> <chr> <chr> 1 2 3 4 5 6 7 8 # ... with 6,480,912 more rows
  • 32. ? ?