Mutagenesis terarah pada DNA.. rekayasa genetika untuk melakukan perubahan secara sengaja dan spesifik pada daerah nukleotida tertentu dari sekuens DNA yang diinginkan
2. Mutagenesis?
Proses dimana mutagen
menyebabkan sekuens DNA /
informasi genetik organisme
mengalami perubahan yang
menghasilkan mutasi.
Dapat terjadi secara spontan di alam
atau buatan melalui proses
laboratorium.
4. Site-directed Mutagenesis
Instead of crudely mutagenizing many
cells or organisms and then analyzing
many thousands or million of off-springs
to isolate a desired mutant, it is now
possible to change specifically any given
base in a cloned sequence. This technique
is known as Site Directed Mutagenesis
(Primrose)
5. Site-directed Mutagenesis
Metode untuk melakukan perubahan secara
sengaja dan spesifik pada daerah nukleotida
tertentu dari sekuens DNA yang diinginkan
biasanya untuk mempelajari fungsi protein.
Perubahan pada basa dapat berupa single
mutation (point mutation) atau multiple base
change (delesi atau insersi).
Site Direction Mutagenesis :
Kunkels Method
Cassette Mutagenesis
Primer Extention (single-primer method)
PCR for Site-directed Mutagenesis
6. Sejarah Penemuan
1920 Herman Muller menemukan mutasi pada lalat
buah akibat pengaruh paparan sinar X-rays
1971 Clyde Hutchison and Marshall Edgell membuat
mutasi menggunakan fragmen kecil dari phage
X174 dan restriction nucleases.
1973 Charles Weissmann menggunakan N4-
hydroxycytidine yang mengubah GC menjadi AT.
1978 Clyde Hutchison and Michael Smith
mendeskripsikan site-directed mutagenesis pertama
kalinya menggunakan oligonukleotida sebagai dalam
metode primer ekstensi.
1993 Michael Smith menerima hadiah nobel dalam
bidan kimia bersam Kary B. Mullis (yang
mengembangkan metode PCR).
7. Mekanisme Umum Site-directed
Mutagenesis
Primer DNA (sintetik) mutasi sesuai
keinginan dan merupakan
komplementer dari DNA template
daerah yang akan dimutasi.
DNA polymerase akan melakukan
ekstensi primer.
DNA yang mengandung daerah
mutasi ini ditransformasikan pada sel
inang sebagai vektor untuk
selanjutnya dilakukan proses kloning
dan seleksi.
8. Kunkels Method
Metode klasik untuk
melakukan mutasi pada
sekuens DNA
Pada metode ini fragmen
DNA yang ingin kita mutasi
dimasukkan ke dalam
phagemid seperti
M13mp18/19, kemudian
ditransformasi ke dalam
sel E. coli strain yang tidak
memiliki dUTPase (dut)
and uracil
deglycosidase (ung).
Hasilnya akan berupa
single strand DNA yang
1
9. Single strand DNA ini
kemudian diekstrak dan
dijadikan sebagai cetakan
(template) untuk mutagenesis.
DNA diinkubasi bersama
mutagenic oligonukleotida yang
mengandung titik mutasi yang
diinginkan sebagai primer
extensi.
DNA akan membentuk
double strand dalam mixture
Klenow, dNTPs, Ligase dan
ATP. Hasilnya berupa double
strand DNA yang pada strand
baru mengandung T dan
strand lama mengandung U.
2
10. DNA hibrid
ditransformasikan
kedalam E. coli
strain yang
membawa gen wild
type dut and ung.
DNA lama yang
mengandung U
akan didegradasi dan
diganti dengan copy
baru yang
mengandung T.
Pada akhirnya yang
tersisa hanya DNA
hasil mutasi.
3
12. Cassette Mutagenesis
Metode Cassette tidak membutuhkan proses pemanjangan
primer oleh DNA polymerase seperti metode lain.
Fragmen DNA disintesis dan dimasukkan ke dalam plasmid.
Melibatkan Enzim restriksi untuk memotong pada derah target
sekuens yang diinginkan.
Fragmen DNA yang mengandung oligonukleotida gen interest
disambung pada daerah restriksi menggunakan enzim ligase.
Keuntungan : efisiensi dalam menghasilkan mutan hampir 100%,
lebih murah karena tidak membutuhkan primer,
Note : limited by the availability of suitable restriction sites flanking
the site that is to be mutated.
14. Primer Extention Method
1. Single strand DNA rekombinan
berasal dari bacteriophage M13
2. Primer mutagenic
oligonukleotida (didesain dan
dibuat memiliki mutasi yang
diinginkan)
3. Hibridisasi primer dengan
mutagenic oligonucleotida
dengan target DNA
4. Ekstensi primer oleh DNA
polymerase
5. Transfeksi atau
ditransformasikan ke bakteri
6. Screening
7. Sekuensing
27. Site-directed mutagenesis by combination of homologous
recombination and DpnI digestion of the plasmid template in
Escherichia coli
28. Manfaat Site-directed
Mutagenesis
Sebagai alat untuk mempelajari fungsi dan
properti dari sekuens DNA tertentu karena mutasi
yang dibuat secara spesifik.
Memungkinkan kita dapat mengetahui dengan
detail identitas dan fungsi dari suatu asam amino
dan melihat efek aktivitas enzimatiknya.
Membuat protein yang dirancang untuk
kebutuhan tertentu.
Editor's Notes
dUTPase(dut) anduracil deglycosidase(ung). Both enzymes are part of a DNA repair pathway that protects the bacterial chromosome from mutations by the spontaneous deamination of dCTP to dUTP. The dUTPase deficiency prevents the breakdown of dUTP, resulting in a high level of dUTP in the cell. The uracil deglycosidase deficiency prevents the removal of uracil from newly-synthesized DNA. As the double-mutantE. colireplicate the phage DNA, its enzymatic machinery may therefore misincorporates dUTP instead of dTTP, resulting in single stranded DNA which contains some uracils (ssUDNA).
Usually the restriction enzymes that cuts at the plasmid and the oligonucleotide are the same,
permitting sticky ends of the plasmid and insert to ligate to one another.
Site-Directed Mutagenesis by Traditional PCR.Primers incorporating the desired base changes are used in PCR. As the primers are extended, the mutation is created in the resulting amplicon.
The overlap-extension method requires fouroligonucleotide primers and three separate amplification reactions (34, 35). Two complementary mutagenic primers induce the mutation into the desired sequence of DNA, and two flanking primers amplify the mutant fragment and facilitate cloning of the PCR fragment into a suitable vector. By this approach (Fig. 3), a variety of mutations can be created, such as single base-pair changes, deletions, and insertions. First, two separate PCR reactions are set up in parallel. One reaction has the "sense" mutant primer and an "anti-sense" flanking primer 3 to the mutation site. The other reaction contains the anti-sense mutant primer and the sense flanking primer 5 to the mutation site. The two amplified fragments contain mutations at the 5 or 3 terminus, respectively. In the second round of amplification, the two fragments from the first round of PCR are purified, then used as templates for amplification using only the flanking primers. After amplification, the mutation is contained within the target DNA segment, which is cloned into appropriate vectors for DNA sequencing and subsequent functional studies.
Figure 3. Site-directed mutagenesis by overlap-extension PCR. The two first rounds of PCR produced two overlapping fragments of the original template, both containing the mutation within the overlap region. These two PCR products are annealed and then subjected to a second round of PCR to generate the entire fragment with the mutation. The flanking primers contain the restriction sites for ligating the fragment back into the original vector.
The megaprimer method uses only a single mutagenicprimer to create mutations in the target template (36-38) (Fig. 4). In the first round of amplification, the wild-type template is amplified using either a sense or anti-sense mutagenic primer and an appropriate flanking primer. The amplified product is then used in a second round of PCR with wild-type template and the other flanking primer to create a fragment of the same length as the original target DNA containing the desired mutation. The key to this method is that the amplified product from the first round of PCR is used as a primer in the second round of PCR. Compared to the four-primer method, this procedure requires only a single mutagenic primer and yields more of the full-length product. This is probably due to the instability of the 10- to 20-basepair overlap between the two mutant templates during the second round of amplification when using the four-primer method. In the megaprimer method, the overlap between the template and mutagenic strands is more extensive.
Figure 4. Site-directed mutagenesis by the megaprimer PCR method. The first round of PCR is used to make a fragment of the template DNA containing the desired mutation. This "megaprimer" is then hybridized to the wild-type template DNA, and a second round of PCR is carried out, to generate the entire molecule with the mutation. The flanking primers contain the restriction sites for cloning the fragment back into the vector
A third approach, termed inverse PCR, uses only two primers to create the desired mutation (39) (Fig. 5). The key feature of this method is that in making the mutation, the entire vector is amplified. The two primers, one containing the desired mutation, extend on the circular template DNA in opposite directions. Amplification ultimately yields a linear, double-stranded DNA molecule containing the mutation at one end. Following amplification, the ends are ligated, and the resulting circular DNA molecule is transformed into E. coli. There are a number of variations of this method that improve the efficiency of mutagenesis (reviewed in 33).
Figure 5. Site-directed mutagenesis by inverse PCR. The vector is cleaved by a restriction enzyme at a single site, close to the site to be mutated. Two primers from the two ends of the linearized molecule, one containing the desired mutation, are used to amplify the linear molecule and produce molecules with the mutation. After ligating the ends to regenerate a circular molecule, the vector is used to transform E. coli.
Figure 3. Site-Directed Mutagenesis by Inverse PCR. The primers used are 5-phosphorylated to allow ligation of the amplicon ends after PCR. A high fidelity DNA polymerase that creates blunt-ended products is used for the PCR to produce a linearized fragment with the desired mutation, which is then recircularized by intramolecular ligation. (A) Deletion: Primers that hybridize to regions on either side of the area to be deleted are used. (B) Substitution: One of the primers contains the desired mutation (blue bubble). (C) Insertion: The primers hybridize to regions on either side of the location of the desired insertion (black, dotted line). One primer contains the additional sequence that will be inserted (blue line).
Fig. 1.Schematic diagram of the site-directed mutagenesis method that combines homologous recombination andDpnI digestion of the templates inE. coliBUNDpnI. (A) Protocol for sequence deletion. The target sequence for deletion is denoted in gray, while the flanking regions are denoted in light brown and red. The regions of primers that can hybridize on each strand of the template to gene-specific sequence immediate to the deletion are indicated by arrows, respectively. Fifteen nucleotides immediately 5 to the region to be deleted (indicated by ab) should be contained in primer F. Step 1: PCR amplification. The desired mutation(s)-containing DNA molecules with a homologous region at the terminal ends were created by PCR. Step 2: Transformation. The mutated plasmid was efficiently generated on direct transformation of the amplified PCR products intoE. coliBUNDpnI. (B) Sequence insertion. As for sequence insertion, to simplify the figure, only the initial primer binding sites and the final inserted products are depicted. The insertion is denoted by a red and green rectangle. The gene-specific regions of primers that can hybridize on each strand of the template are located immediate to the site of the insertion, respectively. The sequence to be inserted is incorporated at the 5 end of primer F. Primer R contains a 5 tail complementary to the 15 outermost nucleotides of primer F (indicated by a red line). The final product with the inserted sequence denoted by the red and green rectangles was obtained after transformation. (C) Point mutations. Only the initial primer binding sites are shown. The region to be mutated is represented by a red rectangle, with the target site indicated by an asterisk. The desired nucleotides (indicated by black square dots) to be introduced into the target sequence are incorporated into the overlapping region of primers. The products carrying the designed mutations are generated by PCR amplification as described for sequence deletion.