1. I.PH畉NCHUNGCHOT畉TC畉CCTHSINH(7,0 i畛m)
C但uI(2,0i畛m) Chohms畛y=x4
- 2mx2
+m(1),mlthams畛
1.Kh畉os叩ts畛餌bi畉nthi棚nvv畉渋畛th畛hms畛khim=1.
2. Bi畉tAli畛mthu畛c畛th畛hms畛(1)c坦honh畛b畉ng1.T狸mm畛kho畉ngc叩cht畛i畛m
3
余1
4
B
脱 旦
= 巽 歎
竪 淡
畉nti畉ptuy畉nc畛a畛th畛hms畛(1)t畉iAl畛nnh畉t.
C但uII(2,0i畛m)
1. Gi畉iph動董ngtr狸nh
5
2.cos5 sin( 2 ) sin 2 .cot3 .
2
x x x x
p
p
脱 旦
- + = +巽 歎
竪 淡
2.Gi畉i h畛ph動董ngtr狸nh
2 2
4 2 2
2 3 15 0
2 4 5 0
x y x y
x y x y
狸 + + - =誰
鱈
+ - - - =誰樽
C但uIII(1,0i畛m) T鱈nh
2
3 9 1
x
I dx
x x
=
+ -
嘆
C但uIV(1,0i畛m) Choh狸nhch坦pS.ABCDc坦叩yABCDlh狸nhthoic畉nha,h狸nhchi畉uvu担ngg坦cc畛a
畛nhStr棚n(ABCD)ltrungi畛mHc畛aAB,動畛ngtrungtuy畉nAMc畛a D ACDc坦畛di
3
2
a
,g坦cgi畛a
(SCD)v(ABCD)b畉ng300
.T鱈nhth畛t鱈chkh畛ich坦pS.ABCDvt鱈nhdi畛nt鱈chm畉tc畉ungo畉iti畉ph狸nhch坦p
S.ABC.
C但uV(1,0i畛m) Cho , ,x y zlc叩cs畛th畛cd動董ngtho畉Bm達n x y z続 続 v 3x y z+ + = .
T狸mgi叩tr畛nh畛nh畉tc畛abi畛uth畛c: 3
x z
P y
z y
= + +
II.PH畉NRING(3i畛m) Th鱈sinhch畛ch畛nm畛ttronghaiph畉n(ph畉nAho畉cph畉nB)
A.Theoch動董ngtr狸nhchu畉n
C但uVI.a(2,0i畛m)
1. Trongm畉tph畉ngt畛a畛Oxychoh狸nhthoiABCDbi畉tph動董ngtr狸nhc畛am畛t動畛ngch辿ol:3 7 0x y+ - = ,
i畛mB(0余足3).T狸mt畛a畛c叩c畛nhc嘆nl畉ic畛ah狸nhthoibi畉tdi畛nt鱈chh狸nhthoib畉ng20.
2. Gi畉iph動董ngtr狸nh: .25log)20.155.10log( +=+ xxx
C但uVII.a(1,0i畛m) Chokhaitri畛n(1+2x)10
(x2
+x+1)2
= a0+a1x+a2x2
+β+a14x14
. H達yt狸mgi叩tr畛
c畛a a6.
B.Theoch動董ngtr狸nhn但ngcao
C但uVI.b(2,0 i畛m)
1. Choh狸nhthangvu担ngABCDvu担ngt畉iAvDc坦叩yl畛nlCD,動畛ngth畉ngADc坦ph動董ngtr狸nh
3x y =0,動畛ngth畉ngBDc坦ph動董ngtr狸nhx足2y=0,g坦ct畉ob畛ihai 動畛ngth畉ngBCvABb畉ng450
.
Vi畉tph動董ngtr狸nh 動畛ngth畉ngBCbi畉tdi畛nt鱈chh狸nhthangb畉ng24vi畛mBc坦honh畛d動董ng.
2. Gi畉ib畉tph動董ngtr狸nh 2 2 2
1 log log ( 2) log (6 )x x x+ + + > -
C但uVII.b(1,0i畛m)Cho *
Nnツ Ch畛ngminhr畉ng 0 1 2 3 2
2 2 2 2 22 3 4 ... (2 1) 0n
n n n n nC C C C n C- + - + + + =
足足足足足足足足足足足足足足足足H畉t足足足足足足足足足足足足足足足足足足足足
Th鱈sinhkh担ng動畛cs畛d畛ngtili畛u.C叩nb畛coithikh担nggi畉ith鱈chg狸th棚m
H畛vt棚nth鱈sinh..............................................................S畛 b叩odanh...............................
S畛GD&THT懲NH
TR働畛NGTHPT畛CTH畛
畛THITH畛畉IH畛C,CAO畉NGL畉NI,NM2012
M担n:TON余Kh畛iA,B, D
Th畛igianlmbi:180ph炭t(Kh担ngk畛th畛igianph叩t畛)
Thi th畛 畉i h畛c www.toanpt.net
2. C但u 箪 N畛idung i畛m
V畛im=1hms畛l:
4 2
2 1y x x= - +
+)TX:D=R
+)Gi畛ih畉n,畉ohm: lim 余lim
x x
y y
速+促 速-促
= = +促+促 . 3 0
' 4 4 余 ' 0
1
x
y x x y
x
=辿
= - = 棚 = 賊谷
0.25
+)Hms畛畛ngbi畉ntr棚nc叩ckho畉ng(足1余0),(1余+促 )
ngh畛chbi畉ntr棚nc叩ckho畉ng(足促 余足1),(0余1)
+)Hm畉tc畛c畉it畉ix=0,yC=1,c畛cti畛ut畉ix= 賊 1,yCT=0
0.25
+)BBT:
x 足 促 足1 01+促
y' 足 0+0 足 0+
y +促 1+促
0 0
0.25
1
+)畛th畛
10
8
6
4
2
足2
足4
足6
足8
足10
足15 足10 足5 5 10 15 0.25
+)A ( )Cmツ n棚nA(1余1足m) 0.25
+) 3
' 4 4 '(1) 4 4y x mx y m= - = -
Ph動董ngtr狸nhti畉ptuy畉nc畛a(Cm)t畉iAc坦ph動董ngtr狸nh
y(1- m)=y(1).(x1)
Hay(44m).xy 3(1 m)=0
0.25
Khi坦
2
1
( 余 ) 1
16(1 ) 1
d B
m
-
D = 贈
- +
,D畉u=x畉yrakhivch畛khim=1 0.25
S畛GD&THT懲NH
TR働畛NGTHPT畛CTH畛
PN&THANGI畛M
畛THITH畛畉IH畛C,CAO畉NGL畉NI,NM2012
M担n:TON余Kh畛iA,B,D
(叩p叩ng畛m04trang)
3. Do坦 ( 余 )d B D l畛nnh畉tb畉ng1khivch畛khim=1 0.25
K: sin3 0x 孫
pt 2cos5 sin 2 cos2 .cot3x x x x+ =
0.25
2cos5 sin3 sin 2 cos3 cos2 .cos3x x x x x x+ =
2cos5 sin3 cos5 0x x x- = cos5 ( 2 sin 3 1) 0x x - =
0.25
+)
1
sin3 0
2
x = 孫 (t/mk)
2
12 3
2
4 3
k
x
k
x
p p
p p
辿
= +棚
棚
棚 = +
棚谷
0.25
1
+)cos5 0x =
10 5
k
x
p p
= + t/mk
KL:β
0.25
H畛pt
2 2
2 2 2
( 1)( 2) 4( 1) 4( 2) 5
( 1) ( 2) 10
x y x y
x y
狸 - - + - + - =誰
鱈
- + - =誰樽
.畉t
2
1
2
u x
v y
狸 = -
鱈
= -樽
Tac坦hpt
2 2 2
10 ( ) 2 10
4( ) 5 4( ) 5
u v u v uv
uv u v uv u v
狸 狸+ = + - =
鱈 鱈
+ + = + + =樽 樽
0.25
10
45
u v
uv
+ = -狸
鱈
=樽
(v担nghi畛m)ho畉c
2
3
u v
uv
+ =狸
鱈
= -樽
3
1
u
v
=狸
鱈
= -樽
ho畉c
1
3
u
v
= -狸
鱈
=樽
0.25
+)
3
1
u
v
=狸
鱈
= -樽
T狸m 動畛c2nghi畛m( 余 ) (2余1)x y = v( 余 ) ( 2余1)x y = - 0.25
II
2
+)
1
3
u
v
= -狸
鱈
=樽
T狸m 動畛cnghi畛m ( 余 ) (0余5)x y =
K畉tlu畉n:H畛ph動董ngtr狸nhc坦3nghi畛m:(2余1),(足2余1),(0余5)
0.25
2 2 2
2
(3 9 1) 3 9 1
3 9 1
x
I dx x x x dx x dx x x dx
x x
= = - - = - -
+ -
嘆 嘆 嘆 嘆 0.25
+) 2 3
1 13I x dx x C= = +嘆 0.25
+) 2
2 9 1I x x dx= -嘆
3
2 2 2 2
2
1 1
9 1 (9 1) (9 1)
18 27
x d x x C= - - = - +嘆 0.25
III
V畉y
3
2 32
1
(9 1)
27
I x x C= - + + 0.25
4. +)T鱈nhth畛t鱈chkh畛ich坦p
Tac坦cos 0
60=ACD suyra ACDD 畛u.
3
2
a
HC AM= = v
( )HC CD CD SHC^ ^ .Suyrag坦cgi畛a(SCD)v(ABCD)lSHC=300
0,25
0
.tan 30
2
a
SH HC= = ,
2 3
3 1 3
. .
2 3 12
ABCD SABCD ABCD
a a
S AB CH V S SH= = = =
0,25
IV
+)G畛iGltr畛ngt但mtamgi叩cABC.Tac坦
3
a
GA GB GC= = = .Do
2
a
HS HB HA= = = n棚nc叩ctamgi叩cGHA,GHB,GHSlc叩ctamgi叩cvu担ng
b畉ngnhaun棚nGA=GB=GS.SuyraGt但mm畉tc畉ungo畉iti畉ph狸nhch坦pvb叩n
k鱈nh
3
a
R GC= = .
Di畛nt鱈chm畉tc畉u
3
4
4
2
2 a
RS
p
p ==
0.5
S畛d畛ngbtAM足GM,tac坦 2 , 2
x z
xz x yz z
z y
+ 続 + 続 0.25
T畛坦suyra 3 2 2 3
x z
P y x xz z yz y
z y
= + + 続 - + - +
2
2( ) ( )
2( ) ( )
x z y x y z xz yz
x z y x y z
= + + + + - -
= + + + -
0.25
V Do 0x > v y z続 n棚n ( ) 0x y z- 続 .T畛但yk畉th畛pv畛itr棚nta動畛c
2 2 2
3 2( ) 2(3 ) ( 1) 5 5
x z
P y x z y y y y
z y
= + + 続 + + = - + = - + 続 .
V畉ygi叩tr畛nh畛nh畉tc畛aPb畉ng5畉tkhi x=y=z=1
0.5
Ph動董ngtr狸nhBD 3 9 0x y- - = .T畛a畛 I AC BD= (3余 2)I - 0.25
DoIltrungi畛mBDn棚n (6余 1)D - . G畛i ( 余7 3 )A a a AC- ツ tac坦 2 10BD = 0.25
1
dt(ABCD)=2.dt(ABD)
2 2
3(7 3 ) 91
.2 10 10
2 1 3
a a- - -
=
+
0.25
S
B C
M
D
H
A
5.
2
4
a
a
=辿
棚 =谷
dov畉y 1 1
2 2
(2余1)余 (4余 5)
(4余 5)余 (2余1)
A C
A C
-辿
棚
-谷
0.25
PT ( ) ( )xxx
10.25log20.155.10log =+ xxx
10.2520.155.10 =+
0102.254.15 =+- xx
(chiahaiv畉紳c畛aph動董ngtr狸nhcho x
5 )
0.25
畉t )0(2 >= tt x
,Tac坦pt :15t2
足25t+10=0
棚
棚
谷
辿
=
=
)(
3
2
)(1
tmt
tmt
0.25
VI.a
2 V畛i 1=t 012 == xx
V畛i 歎
淡
旦
巽
竪
脱
===
3
2
log
3
2
2
3
2
2xt x
V畉yph動董ngtr狸nh達choc坦hainghi畛ml 0=x v 歎
淡
旦
巽
竪
脱
=
3
2
log2x .
0.5
Tac坦 ( )奪=
=+
10
0
10
10
2.)21(
k
kk
xCx v 2 2 4 2 3
( 1) ( 3 1 2 2 )x x x x x x+ + = + + + + 0.25
( )
10
10 2 2 4 2 3
10
0
(1 2 ) ( 1) ( 3 1 2 2 ). . 2
kk
k
x x x x x x x C x
=
+ + + = + + + + 奪 0.25VII.a
( ) ( ) ( ) ( ) ( ) 417482..22..22.2..32.
55
10
33
10
66
10
44
10
22
106 =++++= CCCCCa 0.5
T畛a畛i畛mDl:
3 0 0
2 0 0
x y x
x y y
- = =狸 狸
鱈 鱈
- = =樽 樽
=>D(0余0) 尊O
Vectoph叩ptuy畉nc畛a動畛ngth畉ngADvBDl畉nl動畛tl ( ) ( )1 23余 1 , 1余 2n n- -
ur uur
=> cosADB=
2
1
=>ADB=450
=>AD=AB(1)
0.25
V狸g坦cgi畛a動畛ngth畉ngBCvABb畉ng450
=>BCD=450
=> D BCDvu担ng
c但nt畉iB=>DC=2AB.Theobiratac坦: ( )
2
1 3.
24
2 2
ABCD
AB
S AB CD AD= + = =
=>AB=4=>BD= 4 2
0.25
G畛it畛a畛i畛m 余
2
B
B
x
B x
脱 旦
巽 歎
竪 淡
,i畛uki畛nxB>0
=>
2
2
8 10
( )
5
4 2
2 8 10
( )
5
B
B
B
B
x loai
x
BD x
x tm
辿
= -棚
脱 旦 棚= + = 巽 歎
棚竪 淡
=棚
谷
uuur
T畛a畛i畛m
8 10 4 10
余
5 5
B
脱 旦
巽 歎巽 歎
竪 淡
0.25
1
Vect董ph叩ptuy畉nc畛aBCl ( )2余1BCn =
uuur
=>ph動董ngtr狸nh動畛ngth畉ngBCl: 2 4 10 0x y+ - =
0.25
k:0<x<6.BPT 2 2
2 2log (2 4 ) log (6 )x x x+ > - 0.25
BPT 2 2 2
2 4 (6 ) 16 36 0x x x x x+ > - + - > 0.25
x< 足18ho畉c x >2 0.25
VI.b
2 K畉th畛pktac坦t畉pnghi畛mBPTlS=(2余6) 0.25
X辿thms畛 2 2 2 1
( ) (1 ) '( ) (1 ) 2 (1 )n n n
f x x x f x x nx x -
= + = + + + (1) 0,25
6. Theoc担ngth畛ckhaitri畛nnh畛th動cnewtontac坦:
0 1 2 2 2 2
2 2 2 2( ) ( ... )n n
n n n nf x x C C x C x C x= + + + + 0,25
0 1 2 2 2 2
2 2 2 2'( ) 2 3 ... (2 1) n n
n n n nf x C C x C x n C x= + + + + + (2) 0,25
VII.b
Thayx=足1vo(1)v(2)ta動畛c畉ngth畛cc畉nch畛ngminh 0,25
C叩cc叩chgi畉ikh叩c炭ngchoi畛mt動董ng動董ng