際際滷

際際滷Share a Scribd company logo
2016-10-17		|		UC	Berkeley	 Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	 46	
Transparent Repor(ng
Transparency &
Openness Promo(on
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
47
Transparency &
Openness Promo(on
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
48
Transparency &
Openness Promo(on
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
49
The CONSORT
Statement
≒ Consolidated	Standards	of	Repor)ng	Trials	(CONSORT)	
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
50	
MOHER,	D.,	HOPEWELL,	
S.,	SCHULZ,	K.	F.,	
MONTORI,	V.,	
GTZSCHE,	P.	C.,	
DEVEREAUX,	P.	J.,	
ELBOURNE,	D.,	EGGER,	
M.	&	ALTMAN,	D.	G.	
2010.	CONSORT	2010	
Explana)on	and	
Elabora)on:	Updated	
guidelines	for	repor)ng	
parallel	group	
randomised	trials.	BMJ,	
340.
CONSORT:
A brief history
≒ 30	experts	(epidemiologist,	editors,	etc.)	meet	to	discuss	
standardized	assessment	for	trials	
≒ But	they	were	limited	by	a	lack	of	reported	data	
≒ So	they	created	the	Standardized	Repor)ng	of	Trials	(SORT)	statement	
≒ ~Same	)me:	Asilomar	Working	Group	on	Recommenda)ons	for	
Repor)ng	of	Clinical	Trials	in	the	Biomedical	Literature	statement	
≒ JAMA	editor	facilitates	mee)ng:	Two	groups	merge	proposals	
≒ Result:	Consolidated	Standards	of	Repor)ng	Trials	(CONSORT)	
≒ Follow-up	mee)ngs	yield	the	Revised	CONSORT	statement	(2001)	
≒ Further	revisions,	resul)ng	in	the	CONSORT	2010	statement	
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
51	
1993	
1996	
1999	
2007
CONSORT:
Primary Resources
≒Checklist	of	informa)on	to	include	when	repor)ng	a	randomised	trial	
≒Explana)on	and	Elabora)on	for	important	clari鍖ca)ons	on	all	the	items	
≒CONSORT	extensions	for:	
≒Cluster	randomised	trials	
≒Non-inferiority	and	equivalence	trials	
≒Pragma)c	trials	
≒N-of-1	trials	
≒Trials	using	pa)ent-reported	outcomes	(CONSORT-PRO)	
≒Herbal	Medicinal	interven)ons	
≒Non-pharmacological	treatment	interven)ons	
≒Acupuncture	interven)ons	
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
52
CONSORT:
The 2010 Checklist
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
53
CONSORT Extensions
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
54
CONSORT PLUS
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
55	
hkp://rctbank.ucsf.edu/home/cplus/full-list
100s of Other
Repor(ng Guidelines
≒ The	EQUATOR	Network	lists	hundreds	of	repor)ng	guidelines	
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
56	
hkp://www.equator-network.org
Cochrane Systema(c
Review on Repor(ng
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
57
Repor(ng Results of
Registered Trials
2016-10-17		|		UC	Berkeley	
Alasdair	Cohen		|		Lecture	for	Publich	Health	250B	
58
Ad

Recommended

Transparency7
Transparency7
A M
Transparency1
Transparency1
A M
Transparency2
Transparency2
A M
Transparency3
Transparency3
A M
Transparency5
Transparency5
A M
Transparency6
Transparency6
A M
5.3.5 causal inference in research
5.3.5 causal inference in research
A M
5.3.4 reporting em
5.3.4 reporting em
A M
5.3.3 potential outcomes em
5.3.3 potential outcomes em
A M
5.3.2 sufficient cause em
5.3.2 sufficient cause em
A M
5.3.1 causal em
5.3.1 causal em
A M
5.2.3 dags for selection bias
5.2.3 dags for selection bias
A M
5.2.2 dags for confounding
5.2.2 dags for confounding
A M
5.1.3 hills criteria
5.1.3 hills criteria
A M
5.1.2 counterfactual framework
5.1.2 counterfactual framework
A M
5.1.1 sufficient component cause model
5.1.1 sufficient component cause model
A M
5.2.1 dags
5.2.1 dags
A M
4.4. effect modification
4.4. effect modification
A M
4.5. logistic regression
4.5. logistic regression
A M
4.3.2. controlling confounding stratification
4.3.2. controlling confounding stratification
A M
4.3.1. controlling confounding matching
4.3.1. controlling confounding matching
A M
4.2.4. confounding counterfactual
4.2.4. confounding counterfactual
A M
4.2.3. confounding collapsability
4.2.3. confounding collapsability
A M
4.2.2. confounding classical approach
4.2.2. confounding classical approach
A M
4.2.1. confounding mixing of effects
4.2.1. confounding mixing of effects
A M
4.1. introduction
4.1. introduction
A M
4 Threats to validity from confounding bias and effect modification
4 Threats to validity from confounding bias and effect modification
A M
6.5 strengths and challenges
6.5 strengths and challenges
A M
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
SarahMaeDuallo
All the DataOps, all the paradigms .
All the DataOps, all the paradigms .
Lars Albertsson

More Related Content

More from A M (20)

5.3.3 potential outcomes em
5.3.3 potential outcomes em
A M
5.3.2 sufficient cause em
5.3.2 sufficient cause em
A M
5.3.1 causal em
5.3.1 causal em
A M
5.2.3 dags for selection bias
5.2.3 dags for selection bias
A M
5.2.2 dags for confounding
5.2.2 dags for confounding
A M
5.1.3 hills criteria
5.1.3 hills criteria
A M
5.1.2 counterfactual framework
5.1.2 counterfactual framework
A M
5.1.1 sufficient component cause model
5.1.1 sufficient component cause model
A M
5.2.1 dags
5.2.1 dags
A M
4.4. effect modification
4.4. effect modification
A M
4.5. logistic regression
4.5. logistic regression
A M
4.3.2. controlling confounding stratification
4.3.2. controlling confounding stratification
A M
4.3.1. controlling confounding matching
4.3.1. controlling confounding matching
A M
4.2.4. confounding counterfactual
4.2.4. confounding counterfactual
A M
4.2.3. confounding collapsability
4.2.3. confounding collapsability
A M
4.2.2. confounding classical approach
4.2.2. confounding classical approach
A M
4.2.1. confounding mixing of effects
4.2.1. confounding mixing of effects
A M
4.1. introduction
4.1. introduction
A M
4 Threats to validity from confounding bias and effect modification
4 Threats to validity from confounding bias and effect modification
A M
6.5 strengths and challenges
6.5 strengths and challenges
A M
5.3.3 potential outcomes em
5.3.3 potential outcomes em
A M
5.3.2 sufficient cause em
5.3.2 sufficient cause em
A M
5.3.1 causal em
5.3.1 causal em
A M
5.2.3 dags for selection bias
5.2.3 dags for selection bias
A M
5.2.2 dags for confounding
5.2.2 dags for confounding
A M
5.1.3 hills criteria
5.1.3 hills criteria
A M
5.1.2 counterfactual framework
5.1.2 counterfactual framework
A M
5.1.1 sufficient component cause model
5.1.1 sufficient component cause model
A M
5.2.1 dags
5.2.1 dags
A M
4.4. effect modification
4.4. effect modification
A M
4.5. logistic regression
4.5. logistic regression
A M
4.3.2. controlling confounding stratification
4.3.2. controlling confounding stratification
A M
4.3.1. controlling confounding matching
4.3.1. controlling confounding matching
A M
4.2.4. confounding counterfactual
4.2.4. confounding counterfactual
A M
4.2.3. confounding collapsability
4.2.3. confounding collapsability
A M
4.2.2. confounding classical approach
4.2.2. confounding classical approach
A M
4.2.1. confounding mixing of effects
4.2.1. confounding mixing of effects
A M
4.1. introduction
4.1. introduction
A M
4 Threats to validity from confounding bias and effect modification
4 Threats to validity from confounding bias and effect modification
A M
6.5 strengths and challenges
6.5 strengths and challenges
A M

Recently uploaded (20)

Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
SarahMaeDuallo
All the DataOps, all the paradigms .
All the DataOps, all the paradigms .
Lars Albertsson
deep_learning_presentation related to llm
deep_learning_presentation related to llm
sayedabdussalam11
THE LINEAR REGRESSION MODEL: AN OVERVIEW
THE LINEAR REGRESSION MODEL: AN OVERVIEW
Ameya Patekar
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
payalmistryb
SQL-Demystified-A-Beginners-Guide-to-Database-Mastery.pptx
SQL-Demystified-A-Beginners-Guide-to-Database-Mastery.pptx
bhavaniteacher99
Grote OSM datasets zonder kopzorgen bij Reijers
Grote OSM datasets zonder kopzorgen bij Reijers
jacoba18
Residential Zone 4 for industrial village
Residential Zone 4 for industrial village
MdYasinArafat13
llm_presentation and deep learning methods
llm_presentation and deep learning methods
sayedabdussalam11
Data Warehousing and Analytics IFI Techsolutions .pptx
Data Warehousing and Analytics IFI Techsolutions .pptx
IFI Techsolutions
KLIP2Data voor de herinrichting van R4 West en Oost
KLIP2Data voor de herinrichting van R4 West en Oost
jacoba18
Verweven van EM Legacy en OTL-data bij AWV
Verweven van EM Legacy en OTL-data bij AWV
jacoba18
25 items quiz for practical research 1 in grade 11
25 items quiz for practical research 1 in grade 11
leamaydayaganon81
Communication_Skills_Class10_Visual.pptx
Communication_Skills_Class10_Visual.pptx
namanrastogi70555
Attendance Presentation Project Excel.pptx
Attendance Presentation Project Excel.pptx
s2025266191
Shifting Focus on AI: How it Can Make a Positive Difference
Shifting Focus on AI: How it Can Make a Positive Difference
1508 A/S
Veilig en vlot fietsen in Oost-Vlaanderen: Fietssnelwegen geoptimaliseerd met...
Veilig en vlot fietsen in Oost-Vlaanderen: Fietssnelwegen geoptimaliseerd met...
jacoba18
QUALITATIVE EXPLANATORY VARIABLES REGRESSION MODELS
QUALITATIVE EXPLANATORY VARIABLES REGRESSION MODELS
Ameya Patekar
presentation4.pdf Intro to mcmc methodss
presentation4.pdf Intro to mcmc methodss
SergeyTsygankov6
MRI Pulse Sequence in radiology physics.pptx
MRI Pulse Sequence in radiology physics.pptx
BelaynehBishaw
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
Lesson-3_Program-Outcomes-and-Student-Learning-Outcomes_For-Students.pdf
SarahMaeDuallo
All the DataOps, all the paradigms .
All the DataOps, all the paradigms .
Lars Albertsson
deep_learning_presentation related to llm
deep_learning_presentation related to llm
sayedabdussalam11
THE LINEAR REGRESSION MODEL: AN OVERVIEW
THE LINEAR REGRESSION MODEL: AN OVERVIEW
Ameya Patekar
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
YEAP !NOT WHAT YOU THINK aakshdjdncnkenfj
payalmistryb
SQL-Demystified-A-Beginners-Guide-to-Database-Mastery.pptx
SQL-Demystified-A-Beginners-Guide-to-Database-Mastery.pptx
bhavaniteacher99
Grote OSM datasets zonder kopzorgen bij Reijers
Grote OSM datasets zonder kopzorgen bij Reijers
jacoba18
Residential Zone 4 for industrial village
Residential Zone 4 for industrial village
MdYasinArafat13
llm_presentation and deep learning methods
llm_presentation and deep learning methods
sayedabdussalam11
Data Warehousing and Analytics IFI Techsolutions .pptx
Data Warehousing and Analytics IFI Techsolutions .pptx
IFI Techsolutions
KLIP2Data voor de herinrichting van R4 West en Oost
KLIP2Data voor de herinrichting van R4 West en Oost
jacoba18
Verweven van EM Legacy en OTL-data bij AWV
Verweven van EM Legacy en OTL-data bij AWV
jacoba18
25 items quiz for practical research 1 in grade 11
25 items quiz for practical research 1 in grade 11
leamaydayaganon81
Communication_Skills_Class10_Visual.pptx
Communication_Skills_Class10_Visual.pptx
namanrastogi70555
Attendance Presentation Project Excel.pptx
Attendance Presentation Project Excel.pptx
s2025266191
Shifting Focus on AI: How it Can Make a Positive Difference
Shifting Focus on AI: How it Can Make a Positive Difference
1508 A/S
Veilig en vlot fietsen in Oost-Vlaanderen: Fietssnelwegen geoptimaliseerd met...
Veilig en vlot fietsen in Oost-Vlaanderen: Fietssnelwegen geoptimaliseerd met...
jacoba18
QUALITATIVE EXPLANATORY VARIABLES REGRESSION MODELS
QUALITATIVE EXPLANATORY VARIABLES REGRESSION MODELS
Ameya Patekar
presentation4.pdf Intro to mcmc methodss
presentation4.pdf Intro to mcmc methodss
SergeyTsygankov6
MRI Pulse Sequence in radiology physics.pptx
MRI Pulse Sequence in radiology physics.pptx
BelaynehBishaw
Ad

Transparency4