際際滷

際際滷Share a Scribd company logo
IFM Cambridge
December 2013

Fast Filament Stretching, Thinning and Breakup
By

Malcolm Mackley, Simon Butler, Damien Vadillo,
Tri Tuladhar, Stephen Hoath and Stewart Huxley

Department of Chemical Engineering and Biotechnology
University of Cambridge
Cambridge, CB2 3RA, UK.

1
Tri Tuladhar
Xaar

Steve Hoath
Cam IFM

Stewart Huxley
Huxley Bertram

Damien Vadillo
Akzo

Simon Butler
2
Chem Eng Cam
MRM last BSR Presentation
London 2011

This could be the last time, this could be the last time,
maybe the last time, I dont know.
Slow Filament Stretching
On the coefficient of viscous traction and its
relation to that of viscosity
Fred Trouton
Proc. R. Soc. Lond. A 1906
strain rate matrix

ワ
0

 ii + P = 2 ワii
0


ワ

0
0

2
0

0



ワ
2

The Trouton Ratio

 11 + P = 2 ワ
 22 + P = - 2
 11 -  22

e


ワ

2
= 3 ワ =  e ワ

= 3
4
M1 Fluid Extensional viscosity muddle

David James and Ken Walters,
A.A. Collyer (Ed.), Techniques of
Rheological Measurement,
Elsevier,NewYork, 1994, pp. 3353.

Chris. Petrie
Extensional viscosity: A critical discussion
J. Non-Newtonian Fluid Mech. 137 (2006) 1523

5
Filament thinning
Newtonian modelling


 zz  P  2 

zz

0



 rr  P  2  rr   2 / D
D


 E   zz   rr  3   2 / D



Mass Balance

D 

1



 D

2

P

D (t )  D 0 


3

t
6
Filament thinning
D (t )  D 0 


3

t

7
Filament thinning
A.V.Bazilevsky, V.M. Entov and A.N.Rozhkov
3rd European Rheology Conference 1990 Ed D.R.Oliver

The Russian Rheotester

C

A

zz
B
E

Top plate

15 cm

D

Bottom plate

8

rr
Liang and Mackley (1994)
Extensional Rheotester

S1 fluid

PIB solutions

D (t )  D 0 


3

t
9

R. Liang and M.R. Mackley. Journal of Non-Newtonian Fluid Mech. 52, 387-405 (1994).
Liang and Mackley (1994)- Viscoelastic fluids
S1 fluid

First approximation

1
D ( t )  D 0 exp  
 3
R



t



Viscoelastic modelling (John Hinch)

PIB solutions



D / D   g / 3
 g 
D(t)  D 0 exp  
 3侶 t 




10
Multipass Rheometer (MPR) Filament Stretch Rheometer
The MK1 Cambridge Trimaster
Vp

D

R(z,t)

Top Piston

Rmid(t)

Lf

L0
Bottom Piston

Vp
(a) Test fluid positioned
between two pistons.

(b) Test fluid stretched uniaxially (c) Filament thinning and break up
occurrence after pistons has stopped.
at a uniform velocity.
t0
t<0

Tuladhar, T.R. and Mackley, M.R., Journal of Non-Newtonian Fluid Mechanics, 148 97-108. (2008)

11
Lodge Commemorative Meeting on Rheometry
Miskin Manor Cardiff 10 -12th April, 2006
Filament profile just before break up
DEP
DEP + 5.0 wt%

1.2 mm

t = 7 ms
t = 2 ms
The MK 2 Cambridge Trimaster
A dream turning into a reality

Toothed belt
timing pulley

Linear guide rail
Carrier

Timing belt
Replaceable top and
bottom plate

Stepper motor
attached to a pulley
13
Graphics courtesy of James Waldmeyer
Drive
belt

Piston

Linear
traverse
Motor
drive

a

b

High speed camera
Fibre optic light

Cambridge Trimaster

14
Piston response
5000
10 mm/s
100 mm/s
500 mm/s

4000
Top piston
position (mm) 3000

2000
1000
c

0
0

100

200

300

400

500

600

Time (ms)

15
The TriMaster Filament stretch and break up apparatus

piston
sample
belt

pulley
Initial gap  0.2 mm, Final gap  1.2 mm
Piston diameter  1.2 mm, Piston velocity  100 mm/s16
17
Filament thinning

DEP

DEP
+ 2.5%
PS110
Piston velocity 0.15 m/s
D.C.Vadillo, T.Tuladhar, A.C. Mulji, S. Jung, S.D. Hoath,and M.R. Mackley
Journal of Rheology 54, 2 .261-282 (2010)

18
Mid filament diameter time evolution
1200
0%
0.50%
1%
2.50%
5%

1000
800

D
(mm )

600
400
200
0
0

10

20

30

40

Time ( ms )
19
Transient Trouton viscosity ratios
250
DEP-0%PS
DEP-0.5%PS
DEP-1%PS
DEP-2.5%PS
DEP-5%PS

200
Trouton
ratio

E
0

150
100
50
0

0

2

4
Hencky

6

8

10

D 
strain , 2 ln  0 
D 
 t 
20
Mk 3 Cambridge Trimaster
Light weight voice coils
The Ideas Studio (Company now dissolved)

a

b

Nearly worked but..

21
Separation velocities

Texture Analyser
Caber
MPR Mk1 Trimaster
Mk2 Trimaster
Mk3 Trimaster
HB4 Trimaster
Ink Jetting velocity

Single
Piston
m/s
0.040
0.075
0.075
0.075
0.2
2.25

Double
Piston
m/s

0.15
0.15
0.4
4.5

6.0
22
The MK 4 HB4 Cambridge Trimaster

23
Trimaster development: the HB4
Overhead view of the instrument

Camera

Close up of the pistons

Drive wheel
Top
piston

Bottom
piston
Arms holding Light source
the pistons
Trimaster HB4 operation
1600

1400

1200
Piston
separation 1000
/ 亮m

2.25 m/s

800

2.00 m/s
1.00 m/s
0.50 m/s

600

0.20 m/s
0.10 m/s
400
-2

-1

0

1

2
Time / ms

3

4

5

6

26
Speed is of the essence; HB4 vs Mk2 Trimaster
Piston displacement

1.6

Total filament height (mm)

1.4
1.2
1
0.8

MK2-Sample height-150 mm/s

MK4-Sample height- 1m/s

0.6
0.4
0.2
0
0.00

5.00

10.00

Time (s)

15.00

20.00

HB4
27
Base case; solvent only

06A-Ink 6-DPM-18k

10000

1.60

During and after stretching

1.20

06A-Ink 6-DPM-18k

1000

1.00

total sample ht

0.80
0.60

100

0.40

Sample height ((mm)

Filament diameter (袖m)

1.40

0.20
10

0.00
-2

0

2

4

Time,t, (ms)

Solvent DPM
28
Polymer additive; does matter

Concentrated Resin solution (Resin 1, Resin 2 and Resin 3)

Filament diameter,D, (袖m )

600

After stretching

500

07A-Ink 7-Resin 1-celluose -80kMW-5percent-18K
08A-Ink 8-Resin 2-celluose -370k MW-5percent-18K

09A-Ink 9-Resin 3-acrylic -30kMW-20percent-18K

400
300
200
100
0
0.0

100.0

200.0

300.0

400.0

Time, t, (ms)

29
Sorting out the good from the bad

Commercial ceramic good and bad inks

Filament diameter,D, (袖m )

500

After stretching

450
400

30A-Ink A1-Ceramic Sinker-Good jetting-18K
31A-Ink A2-Ceramic Yellow-Bad jetting-18K

350
300
250

200
150

100
50
0
0.0

1.0

2.0

3.0

4.0

5.0

Time, t, (ms)

Good ink

Bad ink
30
The Rheology and Processing Triangle
LVE Rheology
Piezo Axial Vibrator
(PAV)

NLVE Extensional
HB4 Trimaster

1000
G'

Complex viscosity, *, (mPa.s)

eta*

G"

100

10

1

1
10

100

1000

0.1
10000

Elastic (G') & viscous (G") modulus, (Pa)

14A-DPM and 6_6 percent Resin 3

10

Ink Jet Processing

Frequency (Hz)

31
Conclusions

HB4 Cambridge Trimaster
Can follow fast filament stretch thinning and breakup
process of low viscosity fluids.
There is a link between ink jet processing and HB4 data.
(See Steve Hoath presentation)

Acknowledgments
EPSRC and industrial partners in
Next Generation Ink Jet Consortium
32

More Related Content

Trimaster v2-bsr-2013

  • 1. IFM Cambridge December 2013 Fast Filament Stretching, Thinning and Breakup By Malcolm Mackley, Simon Butler, Damien Vadillo, Tri Tuladhar, Stephen Hoath and Stewart Huxley Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge, CB2 3RA, UK. 1
  • 2. Tri Tuladhar Xaar Steve Hoath Cam IFM Stewart Huxley Huxley Bertram Damien Vadillo Akzo Simon Butler 2 Chem Eng Cam
  • 3. MRM last BSR Presentation London 2011 This could be the last time, this could be the last time, maybe the last time, I dont know.
  • 4. Slow Filament Stretching On the coefficient of viscous traction and its relation to that of viscosity Fred Trouton Proc. R. Soc. Lond. A 1906 strain rate matrix ワ 0 ii + P = 2 ワii 0 ワ 0 0 2 0 0 ワ 2 The Trouton Ratio 11 + P = 2 ワ 22 + P = - 2 11 - 22 e ワ 2 = 3 ワ = e ワ = 3 4
  • 5. M1 Fluid Extensional viscosity muddle David James and Ken Walters, A.A. Collyer (Ed.), Techniques of Rheological Measurement, Elsevier,NewYork, 1994, pp. 3353. Chris. Petrie Extensional viscosity: A critical discussion J. Non-Newtonian Fluid Mech. 137 (2006) 1523 5
  • 6. Filament thinning Newtonian modelling zz P 2 zz 0 rr P 2 rr 2 / D D E zz rr 3 2 / D Mass Balance D 1 D 2 P D (t ) D 0 3 t 6
  • 8. Filament thinning A.V.Bazilevsky, V.M. Entov and A.N.Rozhkov 3rd European Rheology Conference 1990 Ed D.R.Oliver The Russian Rheotester C A zz B E Top plate 15 cm D Bottom plate 8 rr
  • 9. Liang and Mackley (1994) Extensional Rheotester S1 fluid PIB solutions D (t ) D 0 3 t 9 R. Liang and M.R. Mackley. Journal of Non-Newtonian Fluid Mech. 52, 387-405 (1994).
  • 10. Liang and Mackley (1994)- Viscoelastic fluids S1 fluid First approximation 1 D ( t ) D 0 exp 3 R t Viscoelastic modelling (John Hinch) PIB solutions D / D g / 3 g D(t) D 0 exp 3侶 t 10
  • 11. Multipass Rheometer (MPR) Filament Stretch Rheometer The MK1 Cambridge Trimaster Vp D R(z,t) Top Piston Rmid(t) Lf L0 Bottom Piston Vp (a) Test fluid positioned between two pistons. (b) Test fluid stretched uniaxially (c) Filament thinning and break up occurrence after pistons has stopped. at a uniform velocity. t0 t<0 Tuladhar, T.R. and Mackley, M.R., Journal of Non-Newtonian Fluid Mechanics, 148 97-108. (2008) 11
  • 12. Lodge Commemorative Meeting on Rheometry Miskin Manor Cardiff 10 -12th April, 2006 Filament profile just before break up DEP DEP + 5.0 wt% 1.2 mm t = 7 ms t = 2 ms
  • 13. The MK 2 Cambridge Trimaster A dream turning into a reality Toothed belt timing pulley Linear guide rail Carrier Timing belt Replaceable top and bottom plate Stepper motor attached to a pulley 13 Graphics courtesy of James Waldmeyer
  • 15. Piston response 5000 10 mm/s 100 mm/s 500 mm/s 4000 Top piston position (mm) 3000 2000 1000 c 0 0 100 200 300 400 500 600 Time (ms) 15
  • 16. The TriMaster Filament stretch and break up apparatus piston sample belt pulley Initial gap 0.2 mm, Final gap 1.2 mm Piston diameter 1.2 mm, Piston velocity 100 mm/s16
  • 17. 17
  • 18. Filament thinning DEP DEP + 2.5% PS110 Piston velocity 0.15 m/s D.C.Vadillo, T.Tuladhar, A.C. Mulji, S. Jung, S.D. Hoath,and M.R. Mackley Journal of Rheology 54, 2 .261-282 (2010) 18
  • 19. Mid filament diameter time evolution 1200 0% 0.50% 1% 2.50% 5% 1000 800 D (mm ) 600 400 200 0 0 10 20 30 40 Time ( ms ) 19
  • 20. Transient Trouton viscosity ratios 250 DEP-0%PS DEP-0.5%PS DEP-1%PS DEP-2.5%PS DEP-5%PS 200 Trouton ratio E 0 150 100 50 0 0 2 4 Hencky 6 8 10 D strain , 2 ln 0 D t 20
  • 21. Mk 3 Cambridge Trimaster Light weight voice coils The Ideas Studio (Company now dissolved) a b Nearly worked but.. 21
  • 22. Separation velocities Texture Analyser Caber MPR Mk1 Trimaster Mk2 Trimaster Mk3 Trimaster HB4 Trimaster Ink Jetting velocity Single Piston m/s 0.040 0.075 0.075 0.075 0.2 2.25 Double Piston m/s 0.15 0.15 0.4 4.5 6.0 22
  • 23. The MK 4 HB4 Cambridge Trimaster 23
  • 24. Trimaster development: the HB4 Overhead view of the instrument Camera Close up of the pistons Drive wheel Top piston Bottom piston Arms holding Light source the pistons
  • 26. 1600 1400 1200 Piston separation 1000 / 亮m 2.25 m/s 800 2.00 m/s 1.00 m/s 0.50 m/s 600 0.20 m/s 0.10 m/s 400 -2 -1 0 1 2 Time / ms 3 4 5 6 26
  • 27. Speed is of the essence; HB4 vs Mk2 Trimaster Piston displacement 1.6 Total filament height (mm) 1.4 1.2 1 0.8 MK2-Sample height-150 mm/s MK4-Sample height- 1m/s 0.6 0.4 0.2 0 0.00 5.00 10.00 Time (s) 15.00 20.00 HB4 27
  • 28. Base case; solvent only 06A-Ink 6-DPM-18k 10000 1.60 During and after stretching 1.20 06A-Ink 6-DPM-18k 1000 1.00 total sample ht 0.80 0.60 100 0.40 Sample height ((mm) Filament diameter (袖m) 1.40 0.20 10 0.00 -2 0 2 4 Time,t, (ms) Solvent DPM 28
  • 29. Polymer additive; does matter Concentrated Resin solution (Resin 1, Resin 2 and Resin 3) Filament diameter,D, (袖m ) 600 After stretching 500 07A-Ink 7-Resin 1-celluose -80kMW-5percent-18K 08A-Ink 8-Resin 2-celluose -370k MW-5percent-18K 09A-Ink 9-Resin 3-acrylic -30kMW-20percent-18K 400 300 200 100 0 0.0 100.0 200.0 300.0 400.0 Time, t, (ms) 29
  • 30. Sorting out the good from the bad Commercial ceramic good and bad inks Filament diameter,D, (袖m ) 500 After stretching 450 400 30A-Ink A1-Ceramic Sinker-Good jetting-18K 31A-Ink A2-Ceramic Yellow-Bad jetting-18K 350 300 250 200 150 100 50 0 0.0 1.0 2.0 3.0 4.0 5.0 Time, t, (ms) Good ink Bad ink 30
  • 31. The Rheology and Processing Triangle LVE Rheology Piezo Axial Vibrator (PAV) NLVE Extensional HB4 Trimaster 1000 G' Complex viscosity, *, (mPa.s) eta* G" 100 10 1 1 10 100 1000 0.1 10000 Elastic (G') & viscous (G") modulus, (Pa) 14A-DPM and 6_6 percent Resin 3 10 Ink Jet Processing Frequency (Hz) 31
  • 32. Conclusions HB4 Cambridge Trimaster Can follow fast filament stretch thinning and breakup process of low viscosity fluids. There is a link between ink jet processing and HB4 data. (See Steve Hoath presentation) Acknowledgments EPSRC and industrial partners in Next Generation Ink Jet Consortium 32