This document discusses infrared sensors for autonomous vehicles. It provides an overview of OSRAM, a leader in LED and laser technologies. It then discusses the sensing challenges for autonomous vehicles, including range, resolution, field of view, and computational challenges. It reviews sensor technologies like LIDAR, infrared cameras, and RADAR, and their applications in autonomous driving. It also explores concepts for low-cost LIDAR solutions using flash LIDAR and scanning LIDAR technologies.
2. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
2
Content
Page
1. OSRAM Overview 03
2. Sensing challenges 06
3. LIDAR 12
4. Infrared Camera 19
5. Sensor Fusion 21
6. Collaboration & Competition in the self driving car business 22
3. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
3
Global Market Leader in LED & Laser
LIDAR Infrared Lasers - AEB
Consumer
Industry
General Lighting
Laser front light
Xenon front light Laser front light
OLED rear light
Matrix LED light
Automotive Lighting
Source: OSRAM, excluding LAMPS
1) at the end of the fiscal year
2) countries where OSRAM had operations at the end of the fiscal year
Employees1) : 20,300
Worldwide Presence2) : >120 countries
Revenue1): 3,571.9 m
4. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
4
Key Automotive Trends
Exterior , Interior & IR
Safety
Design
Visualization &
Connectivity
Comfort &
Safety
Key Automotive Trends
ExteriorInterior
袖AFS
High Luminance
LEDs
Dynamic
Lighting
Projection
HuD
Full Digital Cluster
LED Applications New LED
Development
Display Portfolio
HuD Portfolio
BLU Displays
High ResolutionADB/Matrix
ProjectionUltra slim HL
LIDAR / ADB
Gesture
Wireless
Connectivity
Driver Monitoring
Night Vision
5. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
5
OSRAM Infrared & Laser Automotive Applications
Existing Applications / New Applications
Rain Light
Tunnel Sensors
Ambient light sensors for dimming
and illumination
Dashboard
Car radio
Displays
Immobilizer
Steering wheel
angle sensor
Blue Lasers for
Headlamps
Driver monitoring
Gesture Recognition
IRED based Night vision
Blind spot detection
Lane departure warning
Family Entertainment
System
LIDAR sensing
AEB & ADAS
Laser HuD
6. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
6
Sensing Needs for Vehicle Environment
Continue
Brake
Steer to safety Prepare for crash
Steering is
best option Cannot avoid
crash
Braking is
best option
NO
YES
Current Sensing Range
Upper limit
(For Large Objects)
RADAR : 50 - 250m
Camera : 50 - 70m
LIDAR : 50 200m
Braking Distance / Minimum Sensing Range
(Assumptions : Dry Road, 袖 = 0.7, 1 sec reaction time)
@100mph (161kph/44.7m/s) : > 190 meters
@74mph (119kph,33 m/s) : > 112 meters
@45mph (72.4kph/20.1 m/s) : > 50 meters
@25mph (40kph/11.1 m/s) : > 20 meters
If the closing speed is less than ~ 45mph , current sensing technology can mitigate
collision to large objects under normal daylight dry conditions (distance < 70 meters)
Challenge 1 : Sensing Range
Is projected vehicle
trajectory safe for next
XX meters?
Calculate Time
to Crash
7. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
7
Sensing Needs for Vehicle Environment
Who decides ?
Ignore objects at own risk ..
Challenge 2 : Angular Sensing Resolution
Standard object list for detection does not exist (ignore / standardize with risk)
LIDAR is capable of < 0.5属 resolution at > 100 m (with small form factor)
RADAR size for 0.5属 resolution not practical (~ 0.5 m for 76 GHz RADAR)
Camera range needs to improve & image quality in lowlight (or infrared)
1 Bosch Multi Purpose Camera (MPC2) , 1280 x 960 pixels, 50属 HFOV, 28属 VFOV 2 Velodyne VLP16 (0.1属 0.4属) 3 RADAR equation
What objects should be detected to avoid collision ?
Typical Angular Resolution
1 Camera : 25 pixels / 属
2 LIDAR : 0.3属
3 RADAR : 2.6属 (76 GHz, 10 cm aperture)
1.5m 0.25m 0.4m 0.2m 0.1m 0.2m
tire
piece
potholedog Resolution Size (m)
1属 @ 100 m = > 1.7 m
1属 @ 200 m = > 3.4 m
0.1属 @ 200 m = > 0.4 m
8. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
8
Sensing Needs for Vehicle Environment
Challenge 3 : Field of View
Winding Roads
Need Wide FOV
Traffic Lights & Overhead Signs Need High FOV Up & Down Ramps Need High FOV
FOV Field Of View
9. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
9
Sensing Needs for Vehicle Environment
Challenge 4 : Computational challenges
Time Needed = Sensing time + Reaction Time + Safety Margin
Sensing Time per Sensor = (Points/Frame x # of Frames in Buffer x
compute time/point)
Finer resolution => More data points => more time (or faster
computation)
Redundancy / sensor fusion needed prior to reaction
Reaction Time = (Human delay) + latency in steering or braking
system
Safety Margin : To accommodate environment conditions (road /
temperature) , sensing and computational delays and tolerances
1 Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? : Department of Electronics, UAH. Alcala de 卒
Henares, Madrid, Spain ; IEEE Workshop in June 2016 on Intelligent Vehicles
1
Sensor / Processor / environment / algorithm .. affects
computational time and accuracy
10. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
10
Sensing Needs for Vehicle Environment
Other Challenges
Form factor small and compatible to vehicle styling & materials
Increasing noise from surrounding vehicle RADAR/LIDAR ..
Dealing with satellite signal / GPS loss in real time
Harsh environment Snow/rain/dust/dirt/shock and vibrations
Power / EMC / ESD / ..
Service
Cost
..
Tremendous innovation currently in sensing field
OSRAM working with multiple startups / Tier1 and OEMs
11. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
11
RADAR / Camera / LIDAR Comparison
Sensor Typical
Range
Horizontal
FOV
Vertical
FOV
2020
Price Range
Comments
24 GHz
RADAR
60 m 1 56属 1 ~ 賊 20属 < $100
USA Bandwidth 100 -250 MHz 2
Robust for Rain/snow ;
People Detection / Angular Resolution
77 GHz
RADAR
200 m 1 18属 1 ~ 賊 5属 < $100
USA Bandwidth 600 MHz 2
Robust for Rain/snow ;
People Detection / Angular Resolution
Front Mono
Camera
50 m 1 36属 1 ~ 賊 14 属 < $100
Versatile Sensor (Applications)
Limited depth perception ; affected by rain / fog
Needs illumination (Visible/IR)
LIDAR
(Flash)
75 m 140属 ~ 賊 5属 < $100
Concerns for Rain/Snow;
Good reflection off people w/ angular resolution
Range & S/N limited by eye safety
LIDAR
(Scanning)
200 m 360属 ~ 賊 14属 < $500
Concerns for Rain/Snow;
Typically higher price for angular resolution
Range & S/N limited by eye safety
1 : Vehicle-to-Vehicle Communications: readiness of V2V technology for application DOT HS 812014 ; Table V-7
2 : Millimeter Wave Receiver concepts for 77 GHz automotive radar in silicon Germanium Technology D.Kissenger (SpringerBriefs 2012)
False positives Nuisance to consumer Turns feature off (if possible)
False negatives did not meet spec / expectations
Optimum combination of sensors will be a learning process
Sensor fusion can be done at best on common subset in field of view
12. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
12
Flash LIDAR Design Overview
start
stop
t
Laser
Photodiode
Array
Emitter
Lens
Receiving
Lens
Target
FOV
Working principle : Laser beam spread into field of view and received on photodiode array. Range
determined by eye safe laser power , resolution determined by number of photodiode pixels
Why use : Mature low cost sensor that can be integrated into headlamp / Tail lamp / behind windshield / ..
Range : ~ 30 - 60 meters @ 24 HFOV
Resolution : 3 deg or less
Wavelength : 905 nm has proven sufficient for short range
Laser : OSRAM lasers with peak power 75 120W , with & without drivers , bare die to SMT w/ < 5ns pulse
width (2019 SOP) , also with multiple emitters in one SMT package
Photodiode : OSRAM PD array concepts of various sizes planned for SOP 2018
Why not as popular as RADAR yet in NAFTA?: 2019 NCAP upgrade will incentivize market , more room
for creativity lower cost than RADAR ; market waiting for low cost scanning LIDAR
R Distance
C speed of light
t time between start - stop of pulse
HFOV Horizontal Field Of View
SOP Start of Production
PD Photo Diode
13. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
13
LIDAR Head Lamp Integration LeddarTech Concept
Leddartech Video link
14. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
14
LIDAR Tail Lamp Integration LeddarTech Concept
15. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
15
Phantom Intelligence : Guardian Flash LIDAR
The Guardian
BY PHANTOM INTELLIGENCE
Fully customizable
2x8 Pixels (1x16 also available)
Field of View 9属x36属 Customizable up to 2属x120属
Range limited to 30 meters (for cost optimization)
Connectivity: USB, CAN, GPIO
Programmable alarms/triggers
Power Consumption less than 3 Watts
Laser Output of 70 Watts
Eye Safe (Class 1M)
Price: ~ 100$ in 10k units volume production
Engineering Samples December 2016
AWL Video link
YOU CAN AFFORD THE SAFEST JOURNEY !
16. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
16
LIDAR Low Cost Concept (Reference Design)
30m range
~1cm accuracy
16 pixel array
24属H x 6属V FOV : 2 x 8 array (3属 x 3属per pixel)
Arrangement of pixels and field of view can be customized in future products.
Multiple targets in each pixel can be resolved
Targets ~1m apart (range) can be separated
Differentiating through performance, small size,
scalability, and low power consumption
No moving (scanning) parts
Sun blinding can affect no more than a single pixel
Estimated BOM ~ $25 @ High Volume
Functional sample Q1 2017
Target SOP 2019
Distance (m) Area (m族)
1 0.003
2 0.011
5 0.069
10 0.274
20 1.097
30 2.469
Field Of View Per Pixel
FOV Horizontal Field Of View
SOP Start of Production
BOM Bill of Material (For Hard Ware)
17. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
17
Scanning LIDAR Technologies
Mechanical - Velodyne
Principle: Matched pair of laser &
detectors rotating with a motor at 5
to 20 Hz
Range : 200 m (VLP 32A)
Resolution : 0.1 - 0.4属 (VLP 16)
Vertical FOV: 28属 (VLP 32A)
Price Target : < $500 ~ 2020
Pro : Proven technology
Con: Mechanical integration / price
Principle: Laser scanned with
OPA (& received on SPAD array )
Range : > 150 m
Resolution : 0.1属
FOV: 120属 (HFOV & VFOV ; S3)
Price Target : <$100 ~ 2020
Pro : small size (1 x 1.5 , S3-Qi)
Con: OPA scanning is relatively
new technology
1 Velodyne.com 2 Quanergy.com 3 Innoluce.com
OPA - Quanergy MEMS Innoluce
Principle: Laser scanned with 1D
MEMS Mirror (& received on APD
array )
Range : > 200 m
Resolution : < 0.5属
HFOV: 80属
VFOV: 16属
Price Target : <$100 ~ 2020
Pro : MEMS scanning is proven
Con: Working demo not shown
yet
MEMS Micro Electro Mechanical Systems
APD Avalanche Photo Diode
OPA Optical Phase Array
SPAD Single Photon Avalanche Diodes
FOV Field Of View
18. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
18
MEMS LIDAR Innoluce OSRAM : Concept Proof
Principle: 1 25W OSRAM laser scanned with 1 Innoluce MEMS Mirror and received on an APD array
Range : ~ 60 m
Resolution : 0.1属 Horizontal and 0.2属 Vertical
HFOV: 10属
VFOV: 3属
Next Steps :
Show progressively improved reference design demos in next few months
Targets : >200 m/car ; > 60m/Ped ; 80属 HFOV ; 16属 VFOV ; < 0.5属 Resolution (High power multiple emitter lasers)
High resolution concept proof
MEMS LIDAR Video Link
19. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
19
Infrared Camera - Interior
Mature applications transitioning to mainstream
Why IR Camera : Works in day & night without visible illumination
Moving to Mainstream : Driver monitoring (Drowsy/Distracted)
Catching speed : Gesture recognition
Mobile to Automotive : Iris recognition
Technology frontiers: NIR sensitivity (15 35%), > 2Mp Global shutter
, increasing IRED o/p & efficiency
Concern/Tradeoffs: Privacy Vs App. value , Redglow (850 940 nm)
Future applications : Optimum airbag deployment, Mood lighting ..
Driver Monitoring
1 Deltaid.com
Gesture Control
Iris Recognition
1
20. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
20
Infrared Camera - Exterior
Forward Camera
Surround View
Camera
Rearview
Camera
Cars have to be autonomous at night also Cameras need to work with IR also ..
Why IR Exterior Camera : Need to see adjacent lanes at night w/o visible light
Whats the problem : Visible cameras block IR for better image / use of color information
Options : Use mechanical or SW filter to switch between IR & visible spectrums
Challenges : Modify camera / Illumination / SW for wider FOV and range
Things to watch out for : Laser beam headlamps (Dynamic range of oncoming camera) /
Use of matrix beam lighting (adaptive beams ..)
IR emitters in headlamp
21. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
21
Sensor Fusion Fuse Information of high quality which overlap
Objective of Sensor Fusion : Determine environment around vehicle trajectory
with enough resolution, confidence and speed - to navigate efficiently.
Object_list RADAR Camera LIDAR Sensor Fusion
Car@150m
Dont See it
(Noise)
Not_Classified@100
m & low light
Evaluate TTC &
brake if unresolved ?
@50m Person on bicycle
Not classified Dont see it (Noise) Brake or ignore ?
Potholes & stuff
What can be safely
ignored ?
Object Identification & Classification in range & FOV of interest must be comparable.
LIDAR + Camera fusion potentially better (Due to angular resolution)
Camera improvements : Range (~ 70 m); speed (30 60 Hz) & Low light sensitivity
22. IR for ADAS | OS IR NA MK | R.Thakur
TU Automotive ADAS & Autonomous | 10/04/2016
22
Collaboration & Competition - Self Driving Cars
Why collaborate :
Need NHTSA support Regulations / Testing / Infrastructure / ..
Combine R&D resources & strengths
Be / be with a technology leader to gain market share
Why Compete?
Branding / Technology Leadership (Intangible $ Value)
ADAS technology has shown real market value ($1500 - $3000/car)
Prepare for future market changes (Self driving cars occupy significant share)
What more could/should be done ?
Use Silicon Valley playbook more open source development
Example : Provide raw data from all sensors in a drive ; show me object
identification / classification & tracking .. (Buy the best solution..)
Make sensor requirements and roadmap open
Small startups have very creative solutions & fast development
Why be more open ?
1 year after a new gadget is shown 3 more appear next year (Benefit/Cost)
Will enable faster development of SDC technology for community & save lives !