3. IPCC:N TOIMINNAN PERIAATTEITA
IPCC toiminta keskittyy päätöksenteon kannalta tärkeisiin aiheisiin,
mutta on poliittisesti neutraalia
• COMPREHENSIVE – KATTAVA, PERUSTEELLINEN
all the latest relevant scientific, technical and socio-economic literature
published woldwide is assessed
• BALANCED – TASAPAINOINEN
differing views are reflected in the reports
• OPEN – AVOIN
selection of authors from all countries and relevant discipline, wide
review process by experts and governments
• TRANSPARENT – LÄPINÄKYVÄ
strict clear procedures
• RIGOUR – TARKKA, TÄSMÄLLINEN
scientific accuracy in analysis and interpretation
17.10.14 3
6. MAAPALLON KESKILÄMPÖTILAN POIKKEAMA
Jokainen kolmesta edellisestä vuosikymmentä on ollut
lämpimämpi kuin mikään vuosikymmen vuodesta 1850.
Pohjoisella pallonpuoliskolla 30-vuotisjakso 1983-2012 on
todennäköisesti ollut lämpimin vähintäänkin 1400-vuoteen.
10. Ilmasto on lämpiämässä – siitä ei enää ole epäilystä.
1900-luvun puolivälin jälkeisenä aikana on voitu havaita
muutoksia maapallon ilmastojärjestelmän kaikissa osissa.
Ilmakehä ja meret ovat lämmenneet, lunta ja jäätä on
entistä vähemmän, meren pinta on kohonnut, ja kasvi-huonekaasujen
pitoisuudet ilmakehässä ovat kasvaneet.
Jotkut muutoksista ovat olleet niin suuria, että vastaavaa
ei ole koettu tuhansiin vuosiin.
22. Increasing vulnerability, exposure, or severity and
frequency of climate events increases disaster
risk
Disaster risk management and climate change adaptation can influence the
degree to which extreme events translate into impacts and disasters
23. Adaptation and mitigation are complementary strategies for
reducing and managing risks of climate change.
RISKS OF
CLIMATE CHANGE
INCREASE
WITH CONTINUED
HIGH EMISSIONS
24. IPCC reports are the result of extensive work of many scientists
from around the world.
25. GHG emissions growth between 2000 and 2010 has been larger
than in the previous three decades.
Based on Figure 1.3
25
26. Regional patterns of GHG emissions are shifting along with
changes in the world economy.
Based on Figure 1.6
26
Bangladesh India China Uruguay
27. There is far more carbon in the ground than emitted in any
baseline scenario.
Based on SRREN Figure 1.7
27
28. Stabilization of atmospheric concentrations requires moving
away
from the baseline – regardless of the mitigation goal.
~3°C
28
Based on Figure 6.7
29. Mitigation can result in large co-benefits for human health
and other societal goals.
Based on Figures 6.33 and 12.23
29
30. 17.10.14 30
YHTEENVETO
• Kasvihuonekaasupäästöjen jatkuminen aiheuttaa
lisää lämpenemistä ja pitkäkestoisia muutoksia
ilmastojärjestelmässä.
• Yhdistelmällä sopeutumista ja merkittäviä, jatkuvia
vähennyksiä khk-päästöissä voidaan rajoittaa
ilmastonmuutoksesta aiheutuvia riskejä.
• Ilmastonmuutos on uhka kestävälle kehitykselle. On
kuitenkin olemassa monia mahdollisuuksia yhdistää
hillintä, sopeutuminen ja saavuttaa yhteiskunnallisen
kehityksen tavoitteet.
Editor's Notes
Kattava, laaja
Tasapainoinen
Avoin
Läpinäkyvä
Täsmällisyys, tarkkuus, perusteellisuus
Hallitusten osuus alussa ja lopussa. Tiedeyhteisö tekee työn.
Figure TS.1: Multiple complementary indicators of a changing global climate. Each line represents an independently derived
estimate of change in the climate element. The times series presented are assessed in chapters 2, 3, and 4. In
each panel all datasets have been normalized to a common period of record. A full detailing of which source datasets go
into which panel is given in Chapter 2, Supplementary Material 2.SM.5 and in the respective chapters (See also FAQ
2.1, Figure 1). {2.4, 2.5, 3.2, 3.7, 4.5.2, 4.5.3}
Figure 3.2: a) Observation-based estimates of annual global mean upper (0–700 m) ocean heat content in ZJ (1 ZJ =
10**21 Joules) updated from (see legend): (Levitus et al., 2012), (Ishii and Kimoto, 2009), (Domingues et al., 2008),
(Palmer et al., 2007), and (Smith and Murphy, 2007). Uncertainties are shaded, and plotted as published (at the one
standard error level, except one standard deviation for Levitus, with no uncertainties provided for Smith). Estimates are
shifted to align for 2006–2010, five years that are well measured by Argo, and then plotted relative to the resulting
mean of all curves for 1971, the starting year for trend calculations. b) Observation-based estimates of annual five-year
running mean global mean mid-depth (700–2000 m) ocean heat content in ZJ (Levitus et al., 2012) and the deep (2000 -
6000 m) global ocean heat content trend from 1992–2005 (Purkey and Johnson, 2010), both with one standard error
uncertainties shaded (see legend).
Box 3.1, Figure 1: Plot of energy accumulation in ZJ (1 ZJ = 1021 J) within distinct components of Earth’s climate
system relative to 1971 and from 1971–2010 unless otherwise indicated. See text for data sources. Ocean warming (heat
content change) dominates, with the upper ocean (light blue, above 700 m) contributing more than the deep ocean (dark
blue, below 700 m; including below 2000 m estimates starting from 1992). Ice melt (light grey; for glaciers and ice
caps, Greenland and Antarctic ice sheet estimates starting from 1992, and Arctic sea ice estimate from 1979–2008);
continental (land) warming (orange); and atmospheric warming (purple; estimate starting from 1979) make smaller
contributions. Uncertainty in the ocean estimate also dominates the total uncertainty (dot-dashed lines about the error
from all five components at 90% confidence intervals).
Figure SPM.1 |
(a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel:
annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean of 1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression from one dataset (orange line in panel a). Trends have been calculated where data availability permits a robust estimate (i.e., only for grid boxes with greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period). Other areas are white. Grid boxes where the trend is significant at the 10% level are indicated by a + sign. For a listing of the datasets and further technical details see the Technical Summary Supplementary Material. {Figures 2.19–2.21; Figure TS.2}
Figure SPM.5 Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties for the main drivers of climate change. Values are
global average radiative forcing (RF), partitioned according to the emitted compounds or processes that result in a combination of drivers. The best estimates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; the numerical values are provided on the right of the figure, together with the confidence level in the net forcing (VH – very high, H – high, M – medium, L – low, VL – very low). Albedo forcing due to black carbon on snow and ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m–2, including contrail induced cirrus), and HFCs, PFCs and SF6 (total 0.03 W m–2) are not shown. Concentration-based RFs for gases can be obtained by summing the like-coloured bars. Volcanic forcing is not included as its episodic nature makes is difficult to compare to other forcing mechanisms. Total anthropogenic radiative forcing is provided for three different years relative to 1750. For further technical details, including uncertainty ranges associated with individual components and processes, see the Technical Summary Supplementary Material. {8.5; Figures 8.14–8.18; Figures TS.6 and TS.7
Figure TS.10: Assessed likely ranges (whiskers) and their midpoints (bars) for warming trends over the 1951–2010
period due to well-mixed greenhouse gases (GHG), anthropogenic forcings (ANT), anthropogenic forcings other than
well-mixed greenhouse gases (OA), natural forcings (NAT), and internal variability. The trend in the HadCRUT4
observations is shown in black with its 5 to 95% uncertainty range due only to observational uncertainty in this record.
{Figure 10.5}
Figure TS.15: Top left: Total global mean radiative forcing for the 4 RCP scenarios based on the MAGICC energy
balance model. Note that the actual forcing simulated by the CMIP5 models differs slightly between models.
Fig.TS.19 Compatible fossil fuel emissions simulated by the CMIP5 models for the four RCP scenarios. (Top) Time series of annual emission (PgC yr–1). Dashed lines represent the historical estimates and RCP emissions calculated by the Integrated Assessment Models (IAMs) used to define the RCP scenarios, solid lines and plumes show results from CMIP5 Earth System Models (ESMs, model mean, with one standard deviation shaded).
Figure SPM.10 |
Global mean surface temperature increase as a function of cumulative total global CO2 emissions from various lines of evidence. Multi-
model results from a hierarchy of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in black. The coloured plume illustrates the multi-model spread over the four RCP scenarios and fades with the decreasing number of available models in RCP8.5. The multi-model mean and range simulated by CMIP5 models, forced by a CO2
increase of 1% per year (1% yr–1CO2simulations), is given by the thin black line and grey area. For a specific amount of cumulative CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by RCPs, which include additional non-CO2 forcings. Temperature values are given relative to the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by straight lines. For further technical details see the Technical Summary Supplementary Material. {Figure 12.45; TS TFE.8, Figure 1}
SPM: Figure SPM.1
Full report: 1.1.2.1 (page 9 and 10); 1.1.2.3 (page 12 and 13)