ݺߣ

ݺߣShare a Scribd company logo
By?the?end?of?the?lesson?you?will?be?able?to:
? Use?the?derivative?of?a?function?to?find?
????maximum?and?minimum?points.
? Use?the?second?derivative?to?test?the?nature?of?a?
stationary?point?and/or?point?of?inflexion.
increasing
increasing
decreasing
stationary
stationary
http://www.math.umn.edu/%7Egarrett/qy/TraceTangent.html
? ?
? ?
? ?
? ?
A
B
P
Q
At??A???? ?f?'(x)?>?0?? f?is?increasing ?????????
At??P???? ?f?'(x)?<?0?? f?is?decreasing ?????????
At??B?and?Q???? ?f?'(x)?=?0?? B?and?Q?are?
stationary?points.?????????
f?'??=?0
f?'??<?0
f?'??>?0
f?'??>?0
f?'?=?0
If the derivative is positive then the function is
increasing.
If the derivative is negative then the function is
decreasing.
?
f?'(?a?)?=?0???? (a,?f(a))???is?a?stationary?point
? ?
? ?
? ?
? ?
A
B
P
Q
A point on a curve at which the gradient
is zero is called a stationary point.
At a stationary point, the tangent to the
curve is horizontal.
? ?
? ?
? ?
Local Maximum point
?f?'???>?0
?f?'???=?0
?f?'???<?0
P
To?the?left?of?P At?point?P To?the?right?of?P
?f?'???>?0 ?f?'???<?0?f?'???=?0
P??is?a?local?maximum?point
Local Minimum point
?f?'???>?0
?f?'???=?0
?f?'???<?0
To?the?left?of?P At?point?P To?the?right?of?P
?f?'???>?0?f?'???<?0 ?f?'???=?0
P??is?a?local?minimum?point
P
? ?
? ?? ?
Maximum?and?minimum?points?are?also?called?
turning?points.
Point of inflexion
? ?
? ?
? ?
f?'?=0
f?'?>?0
f?'?>?0P
? ?
? ?
? ?
f?'?=?0
f?'?<?0
f?'?<?0
P
f?'?(?a)?=?0?but??f?'?has?the?same?sign?to?the?right?
and?left?of?a,??a?is?called?a?horizontal?point?of?
inflexion.(because?the?tangent?is?horizontal?at?P)
Point?of?inflection.ggb
? ?
non?horizontal?point?of?inflexion?(?tangent?is?not?
horizontal)
f?'?<?0
f?'?<?0
tangent
? ?
Find?the?coordinates?of?the?stationary?points?on?the?
curve?y=?x3
+3x2
+1?and?determine?their?nature.
y=?x3
+3x2
+1?
Find?the?coordinates?of?the?stationary?points?on?the?
curve?y=?x4?
??4?x3
??and?determine?their?nature.
y=?x4?
??4?x3
?
Attachments
Point?of?inflection.ggb

More Related Content

IB Maths. Turning points. First derivative test