This document discusses the open die forging and seamless rolled ring forging processes. It provides details on how each process works, including starting with heated stock and using presses or rolls to shape the metal. It describes the advantages of forging for part integrity, including directional strength, structural strength, and impact strength. Forging also provides flexibility in part sizes, shapes, and the variety of metals that can be used. Overall, the document presents information on these forging processes and their advantages over other metalworking methods.
The document discusses swivel base vices. It describes the components of a bench vise including the base, fixed jaw, movable jaw, and screw. It then focuses on swivel base vices, explaining that the base can rotate, allowing the workpiece to be positioned at different angles. The document discusses materials used like cast iron and steel. It also outlines the manufacturing process which typically involves casting, and sometimes forging, as well as machining operations after casting.
The document discusses various metal forming processes including rolling, forging, extrusion, and sheet metal working. It provides details on:
- Hot and cold working processes for forming metals like rolling, forging, and extrusion. These processes involve changing the shape of metals above or below their recrystallization temperature.
- Different types of rolling mills and how rolling changes the grain structure and properties of metals.
- The basic process of extrusion using direct or indirect methods to form materials into fixed cross-sections.
- Common forming techniques like deep drawing, bending, spinning, and drawing used to work sheet metals.
Metal rolling is one of the most important metal forming processes. It involves plastically deforming metal between two rolls to reduce thickness and shape the metal. Most metals are hot rolled into basic shapes like blooms and slabs for further manufacturing. The rolls spin in opposite directions to feed and form the metal through compression. Friction must be controlled through lubrication. Rolling refines grain structure and spreads the width of the metal. Different roll materials, sizes, and mill configurations are used depending on the application. Surface defects can occur if scale or dirt are present while internal defects result from improper material distribution.
This document summarizes various metal working processes including hot and cold working. It discusses bulk deformation processes like rolling, forging, extrusion and drawing which involve significant deformation of the starting workpiece. Rolling is described as reducing thickness between two rotating cylinders. Extrusion forces metal to flow through a die to take its shape. Drawing pulls wire through progressively smaller dies. Forging compresses metal between dies to impart shapes. The document also covers sheet metal working processes like bending, drawing and shearing which are performed on metal with a high surface area to volume ratio using punch and die tools.
Roll forming is a metal forming process that uses pairs of rolls to progressively bend and form sheet metal, tubes, or strips into the desired cross-sectional shape. It is commonly used to form lightweight metals like aluminum into strong, rigid parts. The roll forming process strengthens the material and improves properties like hardness and corrosion resistance. Flat rolling is the most widely used metal forming process, accounting for around 90% of forming. It involves passing slabs, strips, sheets, or plates between rolls to reduce thickness and possibly increase width. The workpiece is squeezed between the rolls, reducing thickness through compression. Friction plays an important role in drawing the workpiece into the roll gap for forming. High velocity hydroforming uses high-pressure
Roll forming is a metal forming process that uses pairs of rolls to progressively bend and form sheet metal, tubes, or strips into the desired cross-sectional shape. It is commonly used to form lightweight metals like aluminum into strong, rigid parts. The roll forming process strengthens the material and improves properties like hardness and corrosion resistance. Flat rolling is the most widely used metal forming process, accounting for around 90% of forming. It involves passing slabs, strips, sheets, or plates between rolls to reduce thickness and possibly increase width. The workpiece is squeezed between the rolls, reducing thickness through compression. Friction plays an important role in drawing the workpiece into the roll gap for forming. High velocity hydroforming uses high-pressure
The document discusses various manufacturing processes used in mechanical engineering. It covers primary shaping processes like casting and forging, machining processes, surface finishing processes, and joining processes. It then describes specific processes in more detail, including casting methods like sand casting and die casting. It also discusses hot working processes like hot rolling, hot forging, and extrusion which shape metals above their recrystallization temperature, as well as cold working processes below that temperature like cold rolling. Cold working increases strength and hardness but reduces ductility.
Okay, here are the steps:
1) UTS of 5052-O aluminum = 280 MPa
2) Thickness, t = 1.8 mm
3) Cutting edge length, L = D = * 25 mm = 78.5 mm
4) Using the empirical formula:
Fmax = 7.0 * UTS * t * L
= 7.0 * 280 * 1.8 * 78.5
= 3,400 N
So the estimated maximum punch force required is 3,400 Newtons.
This document provides information on various sheet metal forming processes. It discusses the characteristics of sheet metal and tests used to determine formability. The main sheet metal forming processes covered are tube bending and forming as well as bending of sheet and plate. Tube bending can be done via press bending, rotary drawing, heat induction, roll bending, and sand packing. Sheet and plate bending includes techniques like roll bending, air bending, bottoming, coining, folding, wiping, and rotary bending. Common applications of sheet metal forming in industries like automotive, aircraft, appliances, and furniture are also mentioned.
Advanced Manufacturing Processes PDF Full book by badebhauEr. Bade Bhausaheb
油
This document provides a syllabus for an advanced manufacturing processes course. The syllabus covers 6 units: 1) metal forming processes, 2) advanced welding, casting and forging, 3) advanced material processing techniques, 4) micro machining processes, 5) additive manufacturing processes, and 6) measurement techniques for micro machining. Some key processes discussed include roll forming, hydroforming, electromagnetic forming, friction stir welding, vacuum die casting, and additive manufacturing methods like powder bed fusion. Contact information is also provided.
Investment casting, also known as lost-wax casting, involves making a wax pattern of the desired part, coating it with refractory material to create a ceramic mold, melting away the wax, and pouring molten metal into the mold cavity. This allows for the production of parts with complex geometries and close tolerances with minimal finishing required. Suitable for casting metals that are difficult to machine like aluminum, copper, and alloys. While allowing for intricate designs, investment casting has limitations on part size, thickness, and material selection due to the high costs involved.
Casting is a manufacturing process where liquid material is poured into a mold and allowed to solidify. The solidified part is known as a casting. Investment casting, also known as lost-wax casting, involves creating a wax pattern, coating it with refractory material to create a ceramic mold, melting away the wax to leave a cavity, and pouring molten metal into the mold cavity. This allows for very intricate parts to be cast with close tolerances and smooth finishes. Investment casting is commonly used for parts that are difficult to machine from difficult to machine alloys like aluminum, copper, and steels.
Pacesetter offers three traditional services which include, slitting, blanking / multi-blanking and cut-to-length. Other services that can be added while processing in our service centers are beading sheets and adding strippable. Some of Pacesetters outside processors can perform additional processes such as embossing, perforating and prepainting.
The document summarizes the rolling process. It defines rolling as plastically deforming metal by passing it between rolls. Rolling provides close dimensional control and high production. There are two main types: hot rolling and cold rolling. The document describes various rolling terminologies, mill products, defects, and different rolling processes like hot rolling, cold rolling, shaped rolling, and thread rolling. It also discusses factors like angle of contact, forces involved, and how to control flatness.
The document discusses the rolling process for metal forming. Rolling is defined as passing metal between rolls to plastically deform it. There are two main types: hot rolling, which is used for initial breakdown of ingots, and cold rolling, which provides closer dimensional tolerances and better surface finishes. Rolling can produce products like plate, sheet, strip, bars, and pipes. The rolling process involves passing metal through sets of rolls under high compressive forces.
Bulk deformation processes like rolling are used to reduce the thickness or change the cross-section of metal workpieces. Rolling involves compressing metal between rotating rolls to produce flat products like plates and sheets. Hot rolling is done above the metal's recrystallization temperature to facilitate greater reduction in thickness than cold rolling. It produces a softer microstructure through recrystallization while cold rolling strengthens metals but makes them more brittle. Both processes impact the mechanical properties and microstructure of metals.
This document discusses various bulk deformation techniques including forging, rolling, and extrusion. It covers topics like hot working versus cold working, the advantages of each, and specific forging processes like closed-die forging. Forging refines grain structure and improves properties. It describes how grain flow follows the deformation pattern. The document also discusses forging equipment, defects, and provides examples of forging a connecting rod and crankshaft.
The document discusses the rolling process used in mechanical engineering. It begins with introductions and terminology for rolling. It then covers classifications of rolling mills like two high, three high, and four high mills. The types of rolling processes discussed include conventional, transverse, shaped, ring, powder, and thread rolling. Hot and cold rolling are also covered. Key aspects of the rolling process like roll bite condition and common rolling defects are defined. The document concludes with potential problems in rolling and sample multiple choice questions.
This document discusses various metal forming processes including rolling, extrusion, forging, and drawing. It provides definitions and descriptions of each process. Rolling involves passing metal through rotating rolls to reduce thickness or shape it. Extrusion uses a press to force heated metal through a die to shape it. Forging shapes heated metal by compressing it with dies or hammers. Drawing shapes metal by pulling it through a die to reduce its cross-sectional area. Each process deforms metal through compression or tension to form parts.
The document discusses various aspects of rolling processes. It defines rolling as a metalworking process that uses compressive forces exerted by rolls to reduce the thickness or change the cross-section of a workpiece. It describes the basic components of a rolling mill and the functions of rolls. It also discusses types of rolling like flat rolling, shape rolling, ring rolling, and thread rolling. Key differences between hot and cold rolling are explained along with advantages and disadvantages of each. Various products produced from rolling like plates, sheets, strips are also mentioned.
Extrusion process presentation final (1).pptxAhmedWail2
油
The document discusses different types of extrusion processes including hot and cold extrusion, direct and indirect extrusion, and impact and hydrostatic extrusion. It explains the key factors that affect extrusion quality such as extrusion ratio, billet temperature, lubrication, and die design. Various extrusion products are also presented including tubes, hollow pipes, frames, and plastic objects.
This document discusses rolling processes used to shape metals. It describes rolling as a bulk deformation process that reduces thickness or changes cross-section of a workpiece using compressive forces from rotating rolls. Hot rolling involves heating metal above its recrystallization temperature before rolling, allowing larger deformation and grain refinement. Cold rolling increases strength but reduces ductility, so heat treatment is often required after. The document provides details on advantages and limitations of both hot and cold rolling processes.
Okay, here are the steps:
1) UTS of 5052-O aluminum = 280 MPa
2) Thickness, t = 1.8 mm
3) Cutting edge length, L = D = * 25 mm = 78.5 mm
4) Using the empirical formula:
Fmax = 7.0 * UTS * t * L
= 7.0 * 280 * 1.8 * 78.5
= 3,400 N
So the estimated maximum punch force required is 3,400 Newtons.
This document provides information on various sheet metal forming processes. It discusses the characteristics of sheet metal and tests used to determine formability. The main sheet metal forming processes covered are tube bending and forming as well as bending of sheet and plate. Tube bending can be done via press bending, rotary drawing, heat induction, roll bending, and sand packing. Sheet and plate bending includes techniques like roll bending, air bending, bottoming, coining, folding, wiping, and rotary bending. Common applications of sheet metal forming in industries like automotive, aircraft, appliances, and furniture are also mentioned.
Advanced Manufacturing Processes PDF Full book by badebhauEr. Bade Bhausaheb
油
This document provides a syllabus for an advanced manufacturing processes course. The syllabus covers 6 units: 1) metal forming processes, 2) advanced welding, casting and forging, 3) advanced material processing techniques, 4) micro machining processes, 5) additive manufacturing processes, and 6) measurement techniques for micro machining. Some key processes discussed include roll forming, hydroforming, electromagnetic forming, friction stir welding, vacuum die casting, and additive manufacturing methods like powder bed fusion. Contact information is also provided.
Investment casting, also known as lost-wax casting, involves making a wax pattern of the desired part, coating it with refractory material to create a ceramic mold, melting away the wax, and pouring molten metal into the mold cavity. This allows for the production of parts with complex geometries and close tolerances with minimal finishing required. Suitable for casting metals that are difficult to machine like aluminum, copper, and alloys. While allowing for intricate designs, investment casting has limitations on part size, thickness, and material selection due to the high costs involved.
Casting is a manufacturing process where liquid material is poured into a mold and allowed to solidify. The solidified part is known as a casting. Investment casting, also known as lost-wax casting, involves creating a wax pattern, coating it with refractory material to create a ceramic mold, melting away the wax to leave a cavity, and pouring molten metal into the mold cavity. This allows for very intricate parts to be cast with close tolerances and smooth finishes. Investment casting is commonly used for parts that are difficult to machine from difficult to machine alloys like aluminum, copper, and steels.
Pacesetter offers three traditional services which include, slitting, blanking / multi-blanking and cut-to-length. Other services that can be added while processing in our service centers are beading sheets and adding strippable. Some of Pacesetters outside processors can perform additional processes such as embossing, perforating and prepainting.
The document summarizes the rolling process. It defines rolling as plastically deforming metal by passing it between rolls. Rolling provides close dimensional control and high production. There are two main types: hot rolling and cold rolling. The document describes various rolling terminologies, mill products, defects, and different rolling processes like hot rolling, cold rolling, shaped rolling, and thread rolling. It also discusses factors like angle of contact, forces involved, and how to control flatness.
The document discusses the rolling process for metal forming. Rolling is defined as passing metal between rolls to plastically deform it. There are two main types: hot rolling, which is used for initial breakdown of ingots, and cold rolling, which provides closer dimensional tolerances and better surface finishes. Rolling can produce products like plate, sheet, strip, bars, and pipes. The rolling process involves passing metal through sets of rolls under high compressive forces.
Bulk deformation processes like rolling are used to reduce the thickness or change the cross-section of metal workpieces. Rolling involves compressing metal between rotating rolls to produce flat products like plates and sheets. Hot rolling is done above the metal's recrystallization temperature to facilitate greater reduction in thickness than cold rolling. It produces a softer microstructure through recrystallization while cold rolling strengthens metals but makes them more brittle. Both processes impact the mechanical properties and microstructure of metals.
This document discusses various bulk deformation techniques including forging, rolling, and extrusion. It covers topics like hot working versus cold working, the advantages of each, and specific forging processes like closed-die forging. Forging refines grain structure and improves properties. It describes how grain flow follows the deformation pattern. The document also discusses forging equipment, defects, and provides examples of forging a connecting rod and crankshaft.
The document discusses the rolling process used in mechanical engineering. It begins with introductions and terminology for rolling. It then covers classifications of rolling mills like two high, three high, and four high mills. The types of rolling processes discussed include conventional, transverse, shaped, ring, powder, and thread rolling. Hot and cold rolling are also covered. Key aspects of the rolling process like roll bite condition and common rolling defects are defined. The document concludes with potential problems in rolling and sample multiple choice questions.
This document discusses various metal forming processes including rolling, extrusion, forging, and drawing. It provides definitions and descriptions of each process. Rolling involves passing metal through rotating rolls to reduce thickness or shape it. Extrusion uses a press to force heated metal through a die to shape it. Forging shapes heated metal by compressing it with dies or hammers. Drawing shapes metal by pulling it through a die to reduce its cross-sectional area. Each process deforms metal through compression or tension to form parts.
The document discusses various aspects of rolling processes. It defines rolling as a metalworking process that uses compressive forces exerted by rolls to reduce the thickness or change the cross-section of a workpiece. It describes the basic components of a rolling mill and the functions of rolls. It also discusses types of rolling like flat rolling, shape rolling, ring rolling, and thread rolling. Key differences between hot and cold rolling are explained along with advantages and disadvantages of each. Various products produced from rolling like plates, sheets, strips are also mentioned.
Extrusion process presentation final (1).pptxAhmedWail2
油
The document discusses different types of extrusion processes including hot and cold extrusion, direct and indirect extrusion, and impact and hydrostatic extrusion. It explains the key factors that affect extrusion quality such as extrusion ratio, billet temperature, lubrication, and die design. Various extrusion products are also presented including tubes, hollow pipes, frames, and plastic objects.
This document discusses rolling processes used to shape metals. It describes rolling as a bulk deformation process that reduces thickness or changes cross-section of a workpiece using compressive forces from rotating rolls. Hot rolling involves heating metal above its recrystallization temperature before rolling, allowing larger deformation and grain refinement. Cold rolling increases strength but reduces ductility, so heat treatment is often required after. The document provides details on advantages and limitations of both hot and cold rolling processes.
Looking to revolutionize agriculture with cutting-edge technology? Our Smart Farming Technology Pitch Deck is designed to help you present your innovative ideas with clarity and impact!
Professionally designed slides
Easy-to-edit and fully customizable
Perfect for startups, investors, and agritech businesses
Download now & impress your audience!
Need a custom design? Contact us at info@slidesbrain.com
際際滷sBrain Free PowerPoint Templates & Custom Design Services
#SmartFarming #AgriTech #PitchDeck #StartupPitch #FarmingInnovation #InvestorPresentation #AgricultureTechnology #際際滷sBrain
Nature Inspired Innovation : Designing The Future Using Lessons From The Pastjejchudley
油
In an era dominated by technological revolution, design thinking's impact on economic and cultural success is undeniable.
However, its focus on 'designing for the user' often neglects the broader real-world implications of the complex systems within which the things we design are used.
In this talk, we will advocate for embracing evolutionary and ecological theories as a toolkit for understanding and designing for our dynamic and interconnected world.
By exploring questions about innovation speed, efficiency, and societal impacts through this lens, attendees will gain insights into enhancing UX design, fostering creative problem-solving, and developing impactful, innovative solutions.
From this presentation you will learn:
- How a better understanding of natural biological systems will help to improve their design practice
- The importance of considering the context of how and where your designs will be used
- How to think about your work in different ways that will enable them to take different approaches to problem solving
- How to adopt systems thinking approaches to help you design more impactful, innovative and effective design solutions.
The Business Administration Presentation provides a comprehensive exploration of the core concepts, functions, and importance of business administration in modern organizations. It highlights the key principles of managing business operations, strategic decision-making, and organizational leadership, offering a clear understanding of how businesses operate and thrive in competitive markets.
IDM Crack 6.42 Build 27 Patch With Activation Keyjamaal karmaanii
油
Direct License file Link Below
https://up-community.net/dl/
Internet Download Manager (IDM) Crack 6.42 Build 27 Patch With Activation Key is a device to develop download speeds by to numerous occasions, resume and timetable downloads. Complete error recovery and resume capacity will restart broken or interfered with downloads due to lost affiliations, compose issues, PC shutdowns, or unexpected power outages. Essential practical UI makes IDM straightforward and easy to use
Golf is a game of precision, patience, and sometimes, pure frustration. Every golfer knows the feeling of standing over a crucial putt, heart pounding, hoping not to miss. If youve ever felt the weight of a make-or-break moment on the green, the "If I Miss This Putt I'll Kill Myself" Hat is the perfect accessory for you.
https://dribbble.com/shots/25728776-If-I-Miss-This-Putt-I-ll-Kill-Myself-Hat
2. steelforge.com
Forging Solutions
Facts About Forging
The Open Die Forging Process
The Seamless Rolled Ring Forging Process
Forging Advantages:
Part Integrity
Part Flexibility
Economic Advantages
Comparative Analysis
Facts About Forging
When buyers must select a process and supplier for the production of an important metal part, they face an enormous array of possible
alternatives. A great many metalworking processes are now available, each offering a unique set of capabilities, costs and advantages. The
forging process is ideally suited to many part applications, however some buyers may be unaware of the exclusive benefits available only
from this ancient form of metal forming. In fact, forging is often the optimum process, in terms of both part quality and cost-efficiency-
especially for applications that require maximum part strength, special sizes or critical performance specifications.
There are several forging processes available, including impression or closed die, cold forging, and extrusion. However,here we will discuss
in detail the methods, application and comparative benefits of the open die and seamless rolled ring forging processes. We invite you to
consider this information when selecting the optimum process for the production of your metal parts.
3. steelforge.com
A Historical Perspective
Perhaps the oldest mechanical method of metalworking known to man, forging traces its origins from ancient Egypt through the blacksmith
shops of the pre-industrial period, and directly to the high-technology forging plants of today.
To meet the changing needs of industry, forging has evolved to incorporate the tremendous advances in equipment, computers and electronic
controls that have occurred in recent years. These sophisticated tools complement the creative human skills which, even today, are essential
to the success of every forging made. Modern forging plants are capable of producing superior quality metal parts in a virtually limitless array
of sizes, shapes, materials and finishes.
4. steelforge.com
Forging Defined
At its most basic level, forging is the process of forming and shaping metals through the use of hammering, pressing or rolling. The
process begins with starting stock, usually a cast ingot (or a "cogged" billet which has already been forged from a cast ingot), which is
heated to its plastic deformation temperature, then upset or "kneaded" between dies to the desired shape and size.
During this hot forging process, the cast, coarse grain structure is broken up and replaced by finer grains. Low-density areas,
microshrinkage and gas porosity inherent in the cast metal are consolidated through the reduction of the ingot, achieving sound centers
and structural integrity. Mechanical properties are therefore improved through the elimination of the cast structure, enhanced density,
and improved homogeneity. Forging also provides means for aligning the grain flow to best obtain desired directional strengths.
Secondary processing, such as heat treating, can also be used to further refine the part.
No other metalworking process can equal forging in its ability to develop the optimum combination of properties.
5. steelforge.com
Open Die Forging Process
Open die forging involves the shaping of heated metal parts between a top die attached to a ram and a
bottom die attached to a hammer anvil or press bed. Metal parts are worked above their recrystallization
temperatures-ranging from 1900属F to 2400属F for steel-and gradually shaped into the desired configuration
through the skillful hammering or pressing of the work piece.
While impression or closed die forging confines the metal in dies, open die forging is distinguished by the fact
that the metal is never completely confined or restrained in the dies. Most open die forgings are produced on
flat dies. However, round swaging dies, V-dies, mandrels, pins and loose tools are also used depending on the
desired part configuration and its size.
Although the open die forging process is often associated with larger, simpler-shaped parts such as bars,
blanks, rings, hollows or spindles, in fact it can be considered the ultimate option in "custom-designed" metal
components. High-strength, long-life parts optimized in terms of both mechanical properties and structural
integrity are today produced in sizes that range from a few pounds to hundreds of tons in weight. In addition,
advanced forge shops now offer shapes that were never before thought capable of being produced by the
open die forging process.
6. steelforge.com
Open Die Forging Process continued
Steps to produce a typical spindle-shaped part:
1. Rough forging a heated billet between flat dies to the maximum diameter dimension.
2. A "fuller" tool marks the starting "step" locations on the fully rounded workpiece.
3. Forging or "drawing" down the first step to size.
4. The second step is drawn down to size. Note how the part elongates with each process step as the material is being displaced.
5. "Planishing" the rough forging for a smoother surface finish and to keep stock allowance to a minimum.
7. steelforge.com
The Seamless Rolled Ring Forging Process
The production of seamless forged rings is often performed by a process called ring rolling on rolling mills.These mills vary in
size to produce rings with outside diameters of just a few inches to over 300" and in weights from a single pound up to over
300,000 pounds.
The process starts with a circular preform of metal that has been previously upset and pierced (using the open die forging
process) to form a hollow "donut".This donut is heated above the recrystallization temperature and placed over the idler or
mandrel roll.This idler roll then moves under pressure toward a drive roll that continuously rotates to reduce the wall thickness,
thereby increasing the diameters (I.D. and O.D.) of the resulting ring.
Seamless rings can be produced in configurations ranging from flat, washer-like parts to tall, cylindrical shapes, with heights
ranging from less than an inch to more than 9 feet.Wall thickness to height ratios of rings typically range from 1:16 up to 16:1,
although greater proportions can be achieved with special processing.The simplest, and most commonly used shape is a
rectangular cross-section ring, but shaped tooling can be used to produce seamless rolled rings in complex, custom shapes
with contours on the inside and/or outside diameters.
8. steelforge.com
The Seamless Rolled Ring Forging Process
Producing a ring "preform" by the open die forging process:
1. Starting stock cut to size by weight is first rounded, then upset to achieve structural integrity and
directional grain flow.
2. Work piece is punched, then pierced to achieve starting "donut" shape needed for ring rolling process.
3. Completed preform ready for placement on ring mill for rolling.
4. Ring rolling process begins with the idler roll applying pressure to the preform against the drive roll.
5. Ring diameters are increased as the continuous pressure reduces the wall thickness. The axial rolls control
the height of the ring as it is being rolled.
6. The process continues until the desired size is achieved.
9. steelforge.com
Forging Advantages: Part Integrity
1. Directional Strength
By mechanically deforming the heated metal under tightly controlled conditions, forging
produces predictable and uniform grain size and flow characteristics. Forging stock is also
typically pre-worked to refine the dendritic structure of the ingot and remove defects or
porosity. These qualities translate into superior metallurgical and mechanical qualities, and
deliver increased directional strength in the final part.
2. Structural Strength
Forging also provides a degree of structural integrity that is unmatched by other metalworking
processes. Forging eliminates internal voids and gas pockets that can weaken metal parts. By
dispersing segregation of alloys or nonmetallics, forging provides superior chemical uniformity.
Predictable structural integrity reduces part inspection requirements, simplifies heat treating
and machining, and ensures optimum part performance under field-load conditions.
3. Impact Strength
Parts can also be forged to meet virtually any stress, load or impact requirement. Proper
orientation of grain flow assures maximum impact strength and fatigue resistance. The high-
strength properties of the forging process can be used to reduce sectional thickness and overall
weight without compromising final part integrity.
10. steelforge.com
Grain Flow Comparison
Forged Bar:
Directional alignment through the forging process has been deliberately oriented in a direction
requiring maximum strength. This also yields ductility and resistance to impact and fatigue.
Machined Bar:
Unidirectional grain flow has been cut when changing contour, exposing grain ends. This
renders the material more liable to fatigue and more sensitive to stress corrosion cracking.
Cast Bar:
No grain flow or directional strength is achieved through the casting process.
11. steelforge.com
Forging Advantages: Part Flexibility
1.Variety of Sizes
Limited only to the largest ingot that can be cast, open die forged part weights can run from a single pound to over 400,000
pounds. In addition to commonly purchased open die parts, forgings are often specified for their soundness in place of rolled
bars or castings, or for those parts that are too large to produce by any other metalworking method.
2.Variety of Shapes
Shape design is just as versatile, ranging from simple bar, shaft and ring configurations to specialized shapes.These include
multiple O.D./I.D. hollows, single and double hubs that approach closed die configurations, and unique, custom shapes
produced by combining forging with secondary processes such as torch cutting, sawing and machining. Shape designs are
often limited only by the creative skills and imagination of the forging supplier.
3. Metallurgical Spectrum
Forgings can be produced from literally all ferrous and non-ferrous metals.The forging process itself can be adjusted-through
the selection of alloys, temperatures, working methods and post-forming techniques-to yield virtually any desired metallurgical
property.
4. Quantity and Prototype Options
Virtually all open die and rolled ring forgings are custom made one at a time, providing the option to purchase one, a dozen or
hundreds of parts as needed.An added benefit is the ability to offer open die prototypes in single piece or low volume
quantities. No better way exists to test initial closed die forging designs, because open die forging imparts similar grain flow
orientation, deformation, and other beneficial characteristics. In addition, the high costs and long lead times associated with
closed die tooling and set-ups are eliminated.
12. steelforge.com
Economic Advantages
1. Material Savings
Forging can measurably reduce material costs since
it requires less starting metal to produce many part shapes.
For example, with a torch cut part (A), all corner stock and
the full center slug are lost, even though you pay for the
excess material. With a forging (B), the part is shaped to
size with minimal waste.
2. Machining Economies
Forging can also yield machining, lead time and tool life
advantages. Savings come from forging to a closer-to-finish
size than is capable by alternative metal sources such as
plate or bar. Less machining is therefore needed to finish
the part, with the added benefits of shorter lead time
and reduced wear and tear on equipment.
3. Reduced Rejection Rates
By providing weld-free parts produced with cleaner forging quality material and yielding improved structural integrity, forging can virtually
eliminate rejections.
4. Production Efficiencies
Using the forging process, the same part can be produced from many different sizes of starting ingots or billets, allowing for a wider
variety of inventoried grades. This flexibility means that forged parts of virtually any grade can be manufactured more quickly and
economically.
A B
13. steelforge.com
Comparative Analysis
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Machined Bar
Contoured grain flow yielding greater impact and directional strength
Cost savings in material and reduction of waste
Less machining and longer tool life
Broader material options and size ranges
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Weldments/ Fabrications
Superior and more consistent metallurgical properties
Reduced labor, rejection and rework/replacement costs
Stronger parts due to the elimination of welds
Single-piece design and inspection efficiencies
Simplified production requirements
Single and low volume quantity options
Prototypes with comparable properties
Near-net shapes with short lead times and the elimination of tooling costs
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Castings
Directional grain flow and superior final part strength
Structural integrity and product reliability
Reduced process control and inspection requirements
More predictable response to heat treating
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Centrifugal Castings
Greater near-net part design flexibility reducing machining time
Sound, quality, rejection-free parts
Cost savings with the elimination of die, mold and set-up costs
Continuous grain flow for the optimum combination of fatigue
strength and toughness
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Torch Cut Plate
Significantly greater size and grade flexibility
Elimination of porosity and laminations
Reductions in waste and material costs
Controlled directional grain flow yielding optimum strength,
toughness and fatigue resistance
When Compared to:
Open Die and Rolled Ring Forged Metal Parts Deliver:
Closed Die/ Impression Die Forging
Single and low volume quantity options
Prototypes with comparable properties
Near-net shapes with short lead times and the elimination
of tooling costs
14. steelforge.com
Forging and Other Processes Q&A
Q. What is "grain flow"? I've heard "grain flow" mentioned on several occasions when discussing forgings. What exactly is "grain flow" and
what does it do (or not do) for me.
A. Forgings are produced using the open-die forging process through the controlled application of compressive stresses while the metal is
heated in the plastic regime. The metal, once subjected to the compressive stress, will expand in two other directions unless constrained in
either direction. The expanding metal will stretch the existing grains and, if the temperature is within the forging temperature region, will
recrystalize and form new strain free grains. The formation of the new grains is not random, however. The new crystal structure is oriented
along the direction of the metal flow and can be used to enhance the properties of the forged component by producing a forging that
closely follows the outline of the component resulting in even better resistance to fatigue and stress corrosion than a forging that does not
contour the component. Other contributors to grain flow are the expansion of microsegregated regions and/or inclusions in the direction of
the metal flow. The effect of the elongated microsegregated regions and/or inclusions can be controlled through the use of high quality
material and due attention to the forging technique.
Q. What are the benefits of a seamless hollow-core forging?
What are the benefits, with respect to residual stresses, of a seamless hollow-core forging over rolled and welded plate that is subsequently
processed (machining, heat treating, etc.)?
A. In general, distortion of a component will occur when the stress states of either the individual components or the assembly as a whole
shift from one state of equilibrium to a new equilibrium state. The presence of residual stresses in the components act as a source of
potential energy similar in nature to a spring fixed in a compressed state. If the fixture holding the spring remains intact, the spring does not
expand. However, once the fixture is removed, the spring expands until it reaches a new state of equilibrium; either another fixed point or a
point where the potential energy of the spring is expended and the spring is extended. So too will the potential energy in a component due
to residual stress remain unchanged until the equilibrium state is altered; either through mechanical means (metal removal or cold/warm
straightening, etc.) or thermal means (welding, heat treatment, etc.).
(continued)
15. steelforge.com
A. Using this model, it is apparent that the key to minimizing distortion is to select a fabrication process that (1) uses input material with
little or no residual stress and (2) will permit a subsequent processing path that introduces as little residual stress as possible. To form a
plate into a cylinder will, in most cases, necessarily require stretching the metal beyond its yield point to both hold the cylindrical shape
and allow for the subsequent spring-back. If it is assumed that the starting plate is essentially free of residual stress due to processing at
elevated temperatures (a large assumption indeed), the equilibrium state of the plate is subsequently changed during rolling through the
introduction of tensile and compressive stresses that shift the equilibrium state to that of a cylindrical shape (requiring a weld to hold it in
place because of the tendency to spring back, in particular with materials having a high yield strength).
Understanding the proportional relationship between stress and strain (elastic modulus - ironically sometimes referred to as the spring
constant) it can be intuitively understood that the stretching will spring back to a new state that now has residual stress present. In
addition, the introduction of the longitudinal weldment to complete the cylindrical shape further disrupts the system through the
introduction of thermal energy. The severity of the residual stress will increase with increases in either, or all, of the yield strength of the
base metal, circumference of the tube, and plate thickness. Once the desired shape is achieved, it will remain in that shape as long as no
subsequent processing or service conditions that alters the stress state is performed (machining or welding for example). When the part
does distort, additional mechanical work is required to revive the desired shape resulting in an often "circular" manufacturing path. These
costs are sometimes (often?) not considered when selecting a rolled and welded cylinder.
Consider, now, a seamless hollow-core Scot Forge forging that is forged at elevated temperatures with dynamic recrystallization (the
immediate formation of stress-free grains upon deformation). The stresses introduced during forging to produce the cylindrical shape are
immediately removed through the recrystallization of the crystal structure resulting in an essentially stress-free forging. Consequently, a
rolled and welded assembly possesses significantly higher residual stress than a forged seamless cylinder (hollow-core). Furthermore, no
thermal stresses from welding are introduced during formation of the cylinder as a seamless forged hollow-core, unlike the rolled and
welded plate method. To summarize, the Scot Forge seamless hollow core forging is far more stable and possesses a higher degree of
structural integrity (no welds!) than a rolled and welded cylinder assembly for an often lower overall cost.
Rolled and welded hollow Forged Hollow
16. steelforge.com
Q. What is the optimum reduction needed for forging?
Forging reduction should be sufficient to consolidate the defects inherent to the casting
process such as porosity and other voids while achieving a general wrought structure
by breaking down the cast structure. A 3 to 1 reduction is usually sufficient to achieve
these results. Depending on the alloy and customer requirements, higher reduction
may be to necessary to achieve certain additional mechanical or physical requirements.
Q. What is the ASTM standard for ultrasonic testing of forgings?
Is there a similar standard to ASTM 578 (ultrasonic testing for plate) for forgings?
A. The most common ultrasonic standard practice for forgings is ASTM A388, Standard Practice for Ultrasonic Examination of Heavy Steel
Forgings. Unlike ASTM A578, this standard does not include acceptance criteria so I would suggest using ASTM A788, Supplementary
requirement s20, for starters. You can find the current revision of ASTM Standards at the following link:
http://www.astm.org/cgibin/SoftCart.exe/STORE/standardsearch.shtml ?L+mystore+radl5786+1019794827
Disclaimer: Although the information set forth herein is believed to be correct, AM&FG makes no recommendation, or offers no warranty of any kind with respect to the subject
matter or its accuracy. AM&FG specifically disclaims all warranties, expressed, implied, or otherwise, including without limitation,all warranties of merchantability, fitness, or
suitability for a particular purpose or application.
17. steelforge.com
All Metals & Forge Group is an ISO 9001:2008, AS/EN9100:2009
Rev. C manufacturer of open die forgings and seamless rolled rings,
a certification it obtained and has held since 1994. AM&FG was one
of the first companies in its industry to obtain an ISO certificate of
registration since the companys founding in 1972. AM&FG
maintains one of the most stringent quality processes and
standards in the industry to ensure that our customers receive the
finest forged material with the tightest tolerances in exactly the
condition that best suits their finish machining needs.
All Metals & Forge Group, LLC.
75 Lane Road, Fairfield, New Jersey 07004 USA
Phone: (973) 276-5000
Fax: (973) 276 5050
sales@steelforge.com
www.steelforge.com