6. 6
Lo畉i t畉i t叩c 畛ng
K辿o
(tensile)
N辿n
(compression)
Ct
(shear)
Xo畉n
(torsion)
Materials Science and Engineering- An Introduction, 9th Edition - William D. Callister, Jr. David G. Rethwisch
KHI NI畛M V畛 畛NG SU畉T V BI畉N D畉NG
19. 19
BI畉N D畉NG N H畛I
畛 c畛ng
(v畛ng) t畉i
nhi畛t 畛
ph嘆ng (i.e.,
m担 un n
h畛i) cho m畛t
s畛 lo畉i v畉t
li畛u nh動 kim
lo畉i,
ceramic,
polymer v
composit v畉t
li畛u
20. 20
T畛 s畛 gi畛a bi畉n d畉ng b棚n (x, y) v bi畉n
d畉ng d畛c tr畛c
Kim lo畉i v h畛p kim: = 0.25 - 0.35
M畛i quan h畛 gi畛a G, E v
E = 2G (1 + )
G - 畛ng su畉t tr動畛t
a s畛 kim lo畉i, G = 0.4E
BI畉N D畉NG N H畛I
T鱈nh n h畛i c畛a v畉t li畛u H畛 s畛 Poisson
21. 21
動畛ng cong 畛ng su畉t bi畉n d畉ng
Bi畉n d畉ng n h畛i th畛c s畛 ch畛 d動畛i 0.005 畛 bi畉n
d畉ng (h畉u h畉t c叩c kim lo畉i).
Tr棚n gi畛i h畉n n h畛i (P), quan h畛 畛ng su畉t bi畉n
d畉ng kh担ng c嘆n tuy畉n t鱈nh
Bi畉n d畉ng d畉o x畉y ra l do ph叩 v畛 li棚n k畉t nguy棚n
t畛, trong v畉t li畛u tinh th畛 l do s畛 tr動畛t c畛a l畛ch.
BI畉N D畉NG D畉O
22. 22
畛 b畛n n h畛i (gi畛i h畉n n h畛i)
H畉u h畉t chi ti畉t m叩y 動畛c thi畉t k畉 lm vi畛c trong
gi畛i h畉n n h畛i -> c畉n x叩c 畛nh gi畛i h畉n n h畛i
H畉u h畉t kim lo畉i bi畉n d畉ng d畉o x畉y ra t畛 t畛
i畛m gi畛i h畉n P ph但n chia bi畉n d畉ng d畉o v bi畉n
d畉ng n h畛i
Gi畛i h畉n n h畛i, y (MPa): l i畛m x叩c 畛nh ranh
gi畛i.
M畛t s畛 v畉t li畛u kh坦 x叩c 畛nh i畛m ny, n棚n l叩y quy
動畛c 0.002 (畛 bi畉n d畉ng, 0.2% 畛 gi畉n di.
BI畉N D畉NG D畉O
23. 23
Qu叩 tr狸nh bi畉n d畉ng c畛a th辿p
Th辿p c叩c bon th畉p ho畉c kim lo畉i d畉o, gi畛i h畉n n d畉o x畉y ra trong
kho畉ng i畛m tr棚n v d動畛i.
Gi畛i h畉n n d畉o d畛 x叩c 畛nh. Gi叩 tr畛 gi畛i h畉n n
h畛i l畉y gi叩 tr畛 trung b狸nh.
Nh担m: 35 Mpa ; th辿p c叩c bon trung b狸nh ~ 600
th辿p 畛 b畛n cao > 1400 Mpa
BI畉N D畉NG D畉O
24. 24
畛 b畛n k辿o
V動畛t qua gi畛i h畉n n h畛i v畉t li畛u ti畉p t畛c bi畉n
d畉ng d畉o t畛i gi叩 tr畛 炭ng su畉t l畛n nh畉t, M, v
gi畉m t畛i i畛m F (畛 b畛n ph叩 h畛y)
50 Mpa (Al) to 3000 Mpa for the high-strength steels
BI畉N D畉NG D畉O
25. 25
畛 b畛n k辿o vs. 畛 b畛n n h畛i
Th担ng th動畛ng khi thi畉t k畉 畛 b畛n n h畛i 動畛c quan t但m nhi畛u
h董n, thi畉t k畉 ph畉i 畉m b畉o chi ti畉t m叩y lm vi畛c trong kho畉ng
gi畛i h畉n n h畛i.
畛 b畛n ph叩 h畛y kh担ng ph畉i l ch畛 ti棚u 畛 thi畉t k畉 chi ti畉t m叩y.
BI畉N D畉NG D畉O
39. 39
T坦m t畉t c董 t鱈nh
https://www.youtube.com
Search for: MaterialsScience2000
Methods to test materials
Tensile test - Brinell hardness test - Vickers hardness test - Rockwell hardness test
- Charpy impact test - Fatigue test - Metallography part I - Metallography part II
Dye penetrant Inspection - Magnetic particle examination - Ultrasonic testing
X-ray inspection and computed tomography - Scanning electron microscope
Responsible: Prof. Dr.-Ing. Rainer Schwab,
Karlsruhe University of Applied Sciences, Germany
40. 40
THI畉T K畉/H畛 S畛 AN TON
What are the limits of safe deformation?
Yield strength is usually the
important parameter for
practical engineering design
働S thi畉t k畉: d = Nc
c - 動s t鱈nh to叩n t畛i a
N h畛 s畛 thi畉t k畉 > 1
畉m b畉o
d < y
働S an ton:
w = y/N
N h畛 s畛 an ton
N = 1.2 - 4.0
41. 41
Summary
Stress and strain: Size-independent measures of load and
displacement, respectively
Elastic behavior: Reversible mechanical deformation,
often shows a linear relation between stress and strain
Elastic deformation is characterized by elastic moduli (E or G). To
minimize deformation, select a material with a large elastic moduli
(E or G)
Plastic behavior: Permanent deformation, occurs when the
tensile (or compressive) uniaxial stress reaches the yield strength
y
Tensile strength: maximum stress supported by the material
Toughness: The energy needed to break a unit volume of
material
Ductility: The plastic strain at failure