3. 0. 徭失B初
1. WebにおけるHuman Dynamicsk燕の古勣
2. 猟B初(3云)
2-1. To Return or to Explore: Modelling Human Mobility and Dynamics in
Cyberspace (Poster Session)
2-2. Anomaly Detection in the Dynamics of Web and Social Networks Using
Associative Memory (Research Track: Network Applications)
2-3. Modeling Item-Specific Temporal Dynamics of Repeat Consumption for
Recommender Systems (Poster Session)
3. まとめ
WebにおけるHuman Dynamics 朕肝
5. To Return or to Explore: Modelling Human
Mobility and Dynamics in Cyberspace
[Cyberspace, Online Communities, Human Mobility, Human Dynamics,
Preferential Return, Preferential Exploration]
2-1
9. 守vB冩梢
麗尖腎gの佩 VS Web貧の佩
?Returners and Explorers Dichotomy in Web Browsing Behavior - A Human Mobility Approach
Complex Networks.(2016)
?貌來あり冥沫とリタ`ンに蛍けて蛍裂
2-1. モチベ`ション
10. To Return or to Explore: Modelling Human Mobility and Dynamics in Cyberspace
叱賭
?redditでのきzみデ`タからコミュニティg了の冥沫(Explore)とリタ`ン(Return)佩咾
蛍裂モデリング
悉Y惚?コントリビュ`ション
?Web貧の佩咾任△辰討癸麗尖腎g貧の佩咾藩じ圻尖がPいていることを幣した
?枠圻尖(preferential principle)つまり仝繁は俾?に仟しい侭を冥すことに
d龍をoくし, 屡岑の侭にることが謹くなる々
?繁の冥沫吭崗の協楚晒
?その繁が冥沫しやすい繁かリタ`ンしやすい繁かを協楚議に委燐
?それらのタイプが栖Lしやすいトピックの蛍裂が辛嬬
2-1. 冩梢古勣
11. To Return or to Explore: Modelling Human Mobility and Dynamics in Cyberspace
2-1. 冩梢古勣
12. Anomaly Detection in the Dynamics of Web and
Social Networks Using Associative Memory
[Anomaly Detection, Dynamic Network, Graph Algorithm, Hopfield Network,
Wikipedia, Web Logs Analysis]
2-2
14. 守vB冩梢
r腎g貧のイベントバ`ストの蒙協返隈の冩梢
?STEM: A Spatio-TEmporal Miner for Bursty Activity. SIGMOD(2013).
?r腎gデ`タのマイニング返隈の戻宛
r腎gデ`タの械返
?Spatio-Temporal Outlier Detection in Precipitation Data. In Knowledge discovery from
sensor data.(2010)
?rg撹蛍と腎g撹蛍のデ`タを鏡羨にQう
2-2. モチベ`ション
15. Anomaly Detection in the Dynamics of Web and
Social Networks Using Associative Memory
叱賭
?戻宛返隈をwikipediaデ`タ(並ネットワ`ク,
E方のr狼双)とEnron芙のemailデ`タ(メ`ル僕佚ネットワ`クメ`ル方のr狼双)に
m喘.
?戻宛返隈
?potential anomalyの麻, m輝なメ塹造離立`ドのp
?Hopfield networkの僥(縮oし僥)
悉Y惚?コントリビュ`ション
?戻宛返隈によってGround Truth(Enron芙坪イベント, Google Trendによる弊gのイベント)の
渇竃に撹孔
?返した械の盾來
2-2. 冩梢古勣
16. Anomaly Detection in the Dynamics of Web and
Social Networks Using Associative Memory
2-2. 冩梢古勣
17. Modeling Item-Specific Temporal Dynamics of
Repeat Consumption for Recommender Systems
[Recommender system, Repeat consumption, Temporal dynamics,
Collaborative filtering, Hawkes process]
2-3