PT. Halliburton Logging Service is a branch of Halliburton that provides completion and production services, drilling, and reservoir evaluation to oil companies in Sumatra, Indonesia. Dery Marsan and Ridho Nanda Pratama completed an on-job training program at Halliburton from August to September 2015. Their project involved well log analysis to determine water saturation and the most suitable water resistivity parameters in two formations, with the objectives of identifying water zones, evaluating challenges around determining petrophysical parameters, and analyzing well data. Their analysis identified both water-bearing and possible oil-bearing zones through evaluation of gamma ray, resistivity, neutron-density crossplots, and other well logs.
1 of 56
Downloaded 682 times
More Related Content
Well Log Interpretation and Petrophysical Analisis in [Autosaved]
1. Dery Marsan and Ridho Nanda Pratama
Geophysical Engineering Institut Teknologi Bandung
On Job Training Program PT.HALLIBURTON LOGGING SERVICE
2015
2. PT. Halliburton Logging Service is branch of American multinational
corporation and one of largest oil field service companies.
Located in Duri, Riau, Indonesia and assist Oil Company in
Sumatran Region to perform Completion and Production service,
Drilling and Reservoir evaluation.
On Job Training Timeline : August 10th September 10th 2015
4. Demand and supply of energy for human daily needs
Well optimization for stable production
Requires formation evaluation and petrophysical analysis to interpret well
condition and also reservoir beneath the surface
Challenge for determining petrophysical parameters
5. Determining water zone
There are 2 formations will be evaluated
Determining the most suitable Rw and Sw parameters of interest zone
from each formation
Analyzing data log by correlating each response curve
Determine Rw and Sw Value in each Interest Zone
OBJECTIVES
CHALLENGES
7. Environmental Correction for OH data
Determine Volume of Shale from GR
Determine Total Porosity
Determine Effective Porosity
Determine a (turtuosity factor), m (cementation factor), and n (saturation
exponent) for Archies Formula
Determine Rw
Determine Sw
9. Archie equation developed an experiment based
on clean sand model non-shale content
Only formation water is the only conductive
material inside.
Most of the clastic reservoir rocks have shale
content.
Shale has clay bound water, Archie equation
doesnt differentiate any kind of water, it treats all
water as the same.
Shale contribute formation conductivity
Archie equation was proposed for clean
sandstone reservoir and need modified equation
to calculate water saturation for shaly sand
formation.
10. Shaly Sand Reservoir is a
siliciclastic reservoir in which shale
affects reservoir evaluation and/or
reservoir behavior which consist of
mixture of both sand and shale.
E.C Thomas and Sneider Classification
14. Caliper log measures variations in borehole diameter
with depth, inches as it units.
Work by recording electrical signal that moved by
arm movements (spring) inside this tools
Application :
used for formation evaluations to know the
permeability indicator by comparing to bit sizes data
(ex: porous and permeable sandstone, washout
indicator (most in shales) )
quantify the irregularities for correction
calculate BHV (Borehole volume)
15. measuring the difference between voltage in
surface and in downhole with extremely small
amount of voltage (mV). The concept comes
from the difference of concentration ion in
openhole between drilling mud and formation
water.
Application
by using this method we can retrieve
information about:
identify bed boundaries
permeability indicator
shale / non-shale zone (lithology indicator)
volume of shale indicator
depth correlation
Rw calculation
16. Source of SP signal :
Electrochemical (produce
>95% signal). Consist of liquid
junction potential and
membrane potential
Electrokinetic (rare signal)
The magnitude of deflection will
depends on contrast of the
salinity of two liquids
Total deflection measured from
shale base line
17. Record natural radioactivity in formations,
when the value will increase if
concentration of radioactive material is
high where the common particle is
Thorium, Kalium and Uranium that the
presence is high in shale and low in
sandstone)
Application
by using this method we can retrieve
information about:
Correlation of depth
Bed boundaries
Determining volume of shale
Indicator of lithology
Depth control
18. The concept is bombard the rocks with
radiation and record the amount of
radiation that is not absorbed by
rock,the unit is p.u (porosity unit)
Neutron will be slow if collision with
the particle that have same mass
(example : Hydrogen and Chlorine).
By retrieving information from
hydrogen ions, we can estimate
porosity in formation (direct
measurement).The more particle collision with
matter, the response will become
more low.
19. Density log is tool that record of formations
bulk density by radiating gamma ray into
formation. The unit is g/cc.
The function of this log is to calculate the
porosity, and determining formation density.
Application :
lithology indicators
identify certain minerals
identify overpressure, fracture porosity,
and evaporates minerals.
detect gas-bearing zone.
20. Concept: AC current pass through transmitter coil
and create AC magnetic field and give rise induced
eddy voltage loops in formation. And then AC current
flow the induced formations and voltage in receiver
coils.
Problem : requires non-conductive fluid in borehole,
but work in air hole and muds
Application :
Determine Rt and Sw
Invasion profiling (diameters, permeability indications)
Hydrocarbon bearing zone
Environment :
Fresh water based mud as long as Rmf/Rw > 2.5
Oil based mud
Air drilled boreholes
In salt water-based mud & low contrast Rmf/Rw
21. Application :
Determining true formation
resistivity (Rt) for calculating
uninvaded zone saturation
(Sw)
Identification thin beds
Determining flused zone
resistivity (Rxo) for calculating
flushed zone saturation ( Sxo)
Indicate moveable hydrocarbon
(in combo)*
Estimate diameter invasion (in
combo)*
Correct deeper reading of
resisvity because effect of
invasion
22. detect resistivity of a formation in uninvaded
zone.
LLS : (high current frequency) 1050 Hz
Depth of Investigation : 2-3 feet
Vertical Resolution : 2 feet
23. detect resistivity of a formation in uninvaded
zone.
Frequency : low current frequency 131.25 Hz
Depth of Investigation : 5-7 feet
Vertical Resolution : 2 feet
24. detect resistivity of a formation which is
closer to borehole.
Application :
to estimate the depth of fluid invasion
determine value for flushed zone
resistivity (Rxo)
to calculating flushed zone water
saturation (Sxo)
36. Based on:
GR Log, interval consist of shale zone
and non shale zone
SP log, at non shale zone for all
formation has negative deflection,
Rw>Rmf, fresh water in formation
Caliper log, at non shale part it shows
mudcake (less than 8.5) that means
permeable zone and shale part shows
washout (more than 8.5 )
Separation between MSFL and DLL log
almost apear at all interval which
means good permeability.
Pe, range between 2-4, some part
contain shale zone and sandstone zone
and shaly sandstone as well
Density-Neutron, separation between
both log at shale zone, almost stack in
sand interval which means waterzone,
and probably HC. Separation that show
butterfly effect highly identified as gas
bearing zone.
37. Analysis Depth 556 feet
Interval Analysis 4 feet
Formation A 900-1166 (266 Ft)
Formation B 1166 - 1456 (290 Ft)
Formation A :
shale dominated, shaly
sand reservoir
Formation B:
clearly to determine
reservoir zone and shale
zone
38. WATER BEARING ZONE
Formation
Ratio
Method
Inverse
Archie
Method
SP
Method
A 0.289860964 1.575997521 0.039062
Water Bearing Zone (1086-1091 ft)
Lower GR
Permeable zone (separation, SP, mudcake)
Deflection response in Resistivity
Pe value is close to 2.1 (sandstone with shale
effect)
Neutron-Density almost stack each other
Rw
Archie
Equation
Simandoux
Equation
Indonesia
Equation
Inverse 1 0.940377 0.679455
SP 0.157434 0.164983 0.154414
RATIO 0.428862 0.433977 0.368047
39. Formation
Ratio
Method
Inverse
Archie
Method
SP
Method
B 0.588504195 2.283667181 0.042503
Water Bearing Zone (1189-1195 ft)
Lower GR
Permeable zone (separation, SP, mudcake)
Low curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density almost stack each other
Rw
Archie
Equation
Simandoux
Equation
Indonesia
Equation
Inverse 1 1.043928 0.516518
SP 0.136425 0.170943 0.146134
Ratio 0.507643 0.587798 0.372039
41. WATER BEARING ZONE
Depth
Density
porosity
Neutron
Porosity
Total
Porosity
Effective
Porosity
1086-1091 0.24242424 0.372 0.307212 0.228615
RW
Water Saturation
Archie Simandoux Indonesia
Archie 1.020766 0.742287662 0.580337134
SP 0.160703 0.199420508 0.17964779
Ratio 0.437767 0.431702805 0.364171124
Water Bearing Zone (1186-1091 ft)
Lower GR
Permeable zone (separation, deflection in
SP, has mudcake on caliper log)
Low curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density almost stack each other
43. OIL BEARING ZONE
WATER BEARING ZONE
Oil Bearing Zone (1166-1189 ft)
Lower GR
Permeable zone (separation, deflection in
SP, has mudcake on caliper log)
High curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density almost stack each other
Water Bearing Zone (1189-1217 ft)
Lower GR
Permeable zone (separation, deflection in SP,
has mudcake on caliper log)
Low curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density almost stack each other
44. OIL BEARING ZONE
WATER BEARING ZONE
Depth
Density
porosity
Neutron
Porosity
Total
Porosity
Effective
Porosity
1166-1189 0.32323232 0.365 0.344116 0.272849
1189-1217 0.33333333 0.3705 0.351917 0.263166
RW
Water Saturation
Archie Simandoux Indonesia
Archie 1.478501 0.755435071 0.650912958
SP 0.232766 0.440332997 0.372657851
Ratio 0.634072 0.640019975 0.540872593
RW
Water Saturation
Archie Simandoux Indonesia
Archie 0.888042 0.90969247 0.464719272
SP 0.12115 0.150415762 0.129376124
Ratio 0.450808 0.514985349 0.33234166
45. OIL BEARING ZONE
Depth
Density
porosity
Neutron
Porosity
Total
Porosity
Effective
Porosity
1250-1265 0.24418605 0.284090909 0.341 0.31267
RW
Water Saturation
Archie Simandoux Indonesia
Archie 0.841112 0.753672841 0.411575334
SP 0.114748 0.171353274 0.13220247
Ratio 0.426985 0.485346662 0.300712135
Oil Bearing Zone (1250-1265 ft)
Lower GR
Permeable zone (separation, deflection in SP,
has mudcake on caliper log)
High curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density almost stack each other
46. GAS BEARING ZONE
Depth
Density
porosity
Neutron
Porosity
Total
Porosity
Effective
Porosity
1310-1334 0.35858586 0.175 0.287403 0.2412
RW
Water Saturation
Archie Simandoux Indonesia
Archie 0.410042 0.297849671 0.198358619
SP 0.05594 0.068036849 0.058469459
Ratio 0.208155 0.197823305 0.142845177
Gas Bearing Zone (1310-1334 ft)
Lower GR
Permeable zone (separation, deflection in SP,
has mudcake on caliper log)
High curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density stack each other, and show
butterfly effect area
47. GAS BEARING ZONE
Depth
Density
porosity
Neutron
Porosity
Total
Porosity
Effective
Porosity
1385-1424 0.34435262 0.203
0.28602
2
0.23434
RW
Water Saturation
Archie Simandoux Indonesia
Archie 0.479837 0.367534936 0.231584102
SP 0.065461 0.084017427 0.070268843
Ratio 0.243586 0.242422956 0.167927319
Gas Bearing Zone (1385-1424 ft)
Lower GR
Permeable zone (separation, deflection in SP,
has mudcake on caliper log)
High curve response in Resistivity
Pe value is close to 2.0 (clean sandstone)
Neutron-Density stack each other and show
butterfly effect
48. Inverse Archie method is more suitable to determine Rw value for
both of this formation
Sw method that compatible for this well is Archie Equation and
Indonesia Equation (for A formation).For B formation, the suitable
ones is Simandoux and Archie Equation
There are identified potential HC zone which contain gas or oil:
Oil : 1166-1189 ft, 1250-1265 ft
Gas : 1310-1334 ft, 1385-1424ft
Another data and method improvement is needed for crosscheck
data and get better result
50. API No. N/A OtherServices:
GR/SFTT
Location N :X GR/SWC
E:Y
LAT:A
LOT:B
PermanentDatum G.L. Elev. 106.6 ft Elev.: K.B. 127.1 ft
Logmeasured from O.R.T. 19.5ftabove perm. Datum D.F. 126.1 ft
Drillingmeasured from O.R.T. G.L. 106.6 ft
9.625 in @ 983.0 ft
12.250 IN 983.00 ft
0.197 ohmm 75.30 degF
0.13 ohmm 75.80 degF
0.216 ohmm 78.80 degF
0.07 ohmm 223.0 degF
8-Aug-13 10:04
223 degF @ 5638.0 ft
H A LLIB U R T O N
COMPANY
WELL
ALFA CENTAURY
Saturnus #123
TRIPLE COMBO
1:200(MD)
PT.CHEVRONPACIFIC
INDONESIA
PT.CHEVRON PACIFIC INDONESIA
Saturnus #123
ALFA CENTAURY
RIAU COUNTRY INDONESIA
Source of Sample
WELL
FIELD
PROVINCE
FIELD
PROVINCE
COUNTRY
COMPANY
Date
Run No.
Saturnus#123
ALFACENTAURY
RIAU
INDONESIA
BitSize
Type Fluid in Hole
Depth - Driller
Depth - Logger
Casing- Driller
Witnessed by
8-Aug-13
ONE
5678.00 ft
5638.0 ft
5632.0 ft
983.0 ft
983.0 ft
8.500 in
Bottom- Logged Interval
Top - Logged Interval
Casing- Logger
DIONYSIUS ANGGA
@
Density
PH
Viscosity
KCL- POLYMER
FLOWLINE
Time Since Circulation
Time on Botom
Max. Rec. Temperature
Recorded by
Equipment Location
Rm@Meas. Temperature
Rmf @Meas. Temperature
MR. CHANDRA WINATA
T-1475 CAS
16.1 hr
MEASURED MEASURED
@
Rmc@Meas. Temperature
Rm@BHT
Source Rmf Rmc
Fluid Loss
9.4 ppg
9.00pH
59.00 s/qt
4.9 cptm
@
@
@
@
@
@
@
@
@
@@
@
@
@
@ @
0.197 ohmm 75.30 degF
0.13 ohmm 75.80 degF
0.216 ohmm 78.80 degF
0.07 ohmm 223.0 degF
8-Aug-13 10:04
223 degF @ 5638.0 ft
Source of Sample
Bit Size
Type Fluid in Hole
8.500 in
@
Density
PH
Viscosity
KCL - POLYMER
FLOWLINE
Time Since Circulation
Time on Botom
Max. Rec. Temperature
Rm @ Meas. Temperature
Rmf @ Meas. Temperature
16.1 hr
MEASURED MEASURED
@
Rmc @ Meas. Temperature
Rm @ BHT
Source Rmf Rmc
Fluid Loss
9.4 ppg
9.00 pH
59.00 s/qt
4.9 cptm
@
@
51. GR was corrected to borehole diameter, mud density & tool
position.
Resistivity was corrected to borehole temperature, borehole
diameter and bed thickness
Micro Resistivity was corrected to mudcake resistivity at formation
temperature and mudcake thickness
Neutron Porosity was corrected to mudcake thickness, borehole
salinity, natural or barite mud density, formation temperature and
pressure
Density was corrected real time during logging
52. Based on:
GR Log, interval consist of shale zone and non
shale zone
SP log, at non shale zone for all formation has
negative deflection, Rw>Rmf, fresh water in
formation
Caliper log, at non shale part it shows mudcake
(less than 8.5) that means permeable zone and
shale part shows washout (more than 8.5 )
Separation between MSFL and DLL log almost
apear at all interval which means good
permeability.
Pe, range between 2-4, some part contain shale
zone and sandstone zone with probably contain
shale and calcareous.
Density-Neutron, separation between both log at
shale zone, almost stack in sand interval which
means waterzone, and probably HC
53. Water Bearing Zone (5480 5516 ft and 5544
5560 ft)
Lower GR
Resistivity slighlty lower than other sand body
Pe value is close to 1.8 (sandstone)
Neutron-Density almost stack each other
(Neutron slightly to right of density)
Shale Zone (4900 5450 ft)
Higher GR
Resistivity and MSFL curve quite stack
Lower Resistivity
Pe value between 2.5-4
Oil Bearing Zone (5456 - 5480 ft)
Lower GR
Higher Rsesistivity
Pe value is close to 2 (sandstone)
Neutron-Density almost stack each other
(Neutron slightly to right of density)
Water Bearing Zone
Shale Zone
Oil Bearing Zone
Water Bearing Zone
55. Water Bearing Zone
Water Bearing Zone
Depth
Density
porosity
Neutron
Porosity
Total
Porosi
ty
Effective
Porosity
5480 5516 0.247 0.254 0.251 0.206
5544 5560 0.226 0.262 0.244 0.214
Rw
calculation
method
Sw Archie
Sw
Simandoux
Sw
Indonesia
Rwa (=2.299) 1.0105 0.330024 0.41753
Rw SP
(=0.152)
1.0987 0.2706 0.1504
Rw Ratio
(=0.765)
1.0987 0.4887 0.3611
56. Conclusion
1. Sw method that compatible for this well is Archie Equation (clean sand part) and
Simandoux Equation (for shale part)
2. In A Formation there are:
Oil bearing zone at 5456 5480 ft
Water bearing zone at 5480 5516 ft and 5544 5560 ft
Suggestion
1. Shaly sand analysis study would be better if compared to core data
and thin section to know clay distribution that more reliable