2. Starting with a brief overview
on diversity and algorithmic
systems, to clarify essential
terms and the conceptual
framework.
Diversity
Conceptual framing
What are the specific
characteristics of algorithmic
bias and how to address it in
the context of education and
diversity.
Digital Diversity
Diversity and algorithmic bias
3 Proposals on how to address
algorithmic bias in order to foster
diversity in a digital world.
Conclusion and discussion on
expectations as well as limitations.
Finding a path
Looking into black boxes
15. “When we realize that we are not talking about algorithms in the
technical sense, but rather algorithmic systems of which code is only
a part, their defining features reverse: instead of formality, rigidity,
and consistency, we find flux, revisability, and negotiation.”
- Seaver 2014 -
28. 1. What values do digital tools and algorithmic
architectures embody?
2. Do algorithmic architectures unfairly discriminate
against specific individuals or groups?
3. Is there any transparency on the values embodied?
38. • boyd, d. (2017). “Did Media Literacy Backfire?”. Journal of Applied Youth Studies 1(4).
• Bolukbasi, T.; Chang, K.-W.; Zou James Y.; Saligrama V. and Kalai A. (2016). Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. http://arxiv.org/abs/1607.06520.
• Eubanks, V. (2018). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York: St. Martin's Press.
• Friedman, B. & Nissenbaum, H. (1996). „Bias in computer systems“. In: ACM Transactions on Information Systems 14.3, S. 330–347.
• Kitchin, R., Dodge M. (2014). Code/Space: Software and Everyday Life (Software Studies). Cambridge, Mass und London,
England: MIT Press.
• Nissenbaum, H. (2001). How computer systems embody values. Computer, 34(3), 120-119.
• O’Neal, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown
Publishing.
• Sandvig, C., Hamilton, K., Karahalios, K., & Langbort, C. (2014). Auditing algorithms: Research methods for detecting
discrimination on internet platforms. Data and discrimination: converting critical concerns into productive inquiry, 1-23.
• Seaver, N. (2014). Knowing Algorithms. working paper on the issues that outsiders face in knowing things about algorithms,
delivered at Media in Transition 8
• Seaver, N. (2017). Algorithms as culture: Some tactics for the ethnography of algorithmic systems. Big Data & Society, 4(2),
2053951717738104.
• Stalder, F. (2018). The digital condition. Cambridge, UK; Medford, MA, USA: Polity Press.
• Verständig, D. and Biermann, R. (in press). Zwischen Bias und Diversität – Bildung und Diversity im Kontext algorithmischer
Strukturen. In Kergel, D. and Heidkamp, B. Digital Diversity und Bildung: Wiesbaden: Springer VS.
• Verständig, D. (2017). Bildung und Öffentlichkeit – Eine strukturtheoretische Perspektive auf Bildung im Horizont digitaler Medialität.
Magdeburg: Universität, Diss.
References
39. Images
ݺߣ Author
4 Jason Brown https://flic.kr/p/e62U9Z
5 RAFFI YOUREDJIAN https://flic.kr/p/dkA4Nk
6 REUTERS/Konstantin Chernichkin
7 CityofStPete https://flic.kr/p/vsqtN5
8 Sozialhelden https://flic.kr/p/mU67DV
9 Matt Johnson https://flic.kr/p/CwCifH
10 Paco Gómez Amich https://flic.kr/p/ftaFMS
11 Sozialhelden https://flic.kr/p/r58JKm
12 Johnny Silvercloud https://flic.kr/p/pMhL7J
13,14,16 Christiaan Colen https://flic.kr/p/x9G5bQ
17 Vic. https://flic.kr/p/cARSkU
18 sparkleice https://flic.kr/p/of4zFN
19 James Stuart https://flic.kr/p/UpMthm
20 Japanexperterna.se https://flic.kr/p/sBTNY4
26 ais3n https://flic.kr/p/eYvAVP
31 GotCredit https://flic.kr/p/TcaZyN
35 Luis Perez https://flic.kr/p/YkH4R8
36 markusspiske https://pixabay.com/en/fog-road-highway-tar-1819147/