This document provides an overview of topics covered in the ESGF 4IFM Q1 2012 session on applied statistics. The session included reminders of the previous session, an introduction to multiple regression, and estimations. Games were used to reinforce statistical concepts. Topics covered included multiple regression, ordinary least squares, properties of stationary time series, autocorrelation, and confidence intervals. Estimation techniques like the binomial distribution, normal approximation, and Student's t-distribution were also discussed.
2. ESGF 4IFM Q1 2012
Summary of the session (est. 4.5h)
? Reminders of last session
? Multiple regression
? Introduction to econometrics
vinzjeannin@hotmail.com
? Estimations
? Games: beat the statistics
2
3. Reminders of last session
ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com
3 Methods
? Historical
? Parametrical
? Monte-Carlo
3
4. Options: what to look at to calculate the VaR?
ESGF 4IFM Q1 2012
4 risk factors:
? Underlying price
? Interest rate
? Volatility
? Time
vinzjeannin@hotmail.com
4 answers:
? Delta/Gamma approximation knowing the distribution of the underlying
? Rho approximation knowing the distribution of the underlying rate
? Vega approximation knowing the distribution of implied volatility
? Theta (time decay)
Yes but,¡ Does the underling price/rate/volatility vary independently?
4
Might be a bit more complicated than expected¡
5. Portfolio scale: what to look at to calculate the VaR?
ESGF 4IFM Q1 2012
Big question, is the VaR additive?
vinzjeannin@hotmail.com
NO!
Keywords for the future: covariance, correlation, diversification
5
6. Parametric VaR on 2 assets?
VAR ???????????? + ???????????? = ??????2 ?????????????????? ?????? + ??????2 ?????????????????? ?????? + 2??????????????????????????????(??????, ??????)
ESGF 4IFM Q1 2012
?????? ?????? ¡Ü ?1.645 ? ?????? + ?????? = 0.05
?????? ?????? ¡Ü ?2.326 ? ?????? + ?????? = 0.01
vinzjeannin@hotmail.com
Asset 1 Asset 2
Mean 0 Mean 0
Correlation 0.59
SD 2.34% SD 1.50%
Weight 50% Weight 50%
What is the VaR (95%)?
6
2.83%
7. OLS: Ordinary Least Square
Linear regression model
Minimize the sum of the square vertical distances
between the observations and the linear
ESGF 5IFM Q1 2012
approximation
?????? = ?????? ?????? = ???????????? + ??????
vinzjeannin@hotmail.com
Residual ¦Å
Minimising residuals ??????????????????????????????
?????? =
?????? ?????? ??????2??????
?????? = ???????????? 2 = ???????????? ? ?????????????????? + ?????? 2 7
??????=1 ??????=1
?????? = ?????? ? ????????????
8. ESGF 5IFM Q1 2012
??????????????????????????????
?????? = Value between -1 and 1
???????????? ????????????
vinzjeannin@hotmail.com
Dispersion Regression
??????2 =
Total Dispersion
8
11. Differentiation can happen before the OLS
ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com
11
What do you suggest?
12. Let¡¯s create a new variable
?????????????????????????????? = ln? ??????)
(
ESGF 5IFM Q1 2012
vinzjeannin@hotmail.com
Magic!
12
13. New idea¡ No intercept
Only one parameters to estimate:
ESGF 5IFM Q1 2012
? Slope ¦Â
Minimising residuals
?????? ??????
vinzjeannin@hotmail.com
?????? = ???????????? 2 = ???????????? ? ?????????????????? 2
??????=1 ??????=1
When E is minimal?
When partial derivatives i.r.w. a is 0 13
15. Multiple regressions
ESGF 4IFM Q1 2012
More than one explanatory variables
?????? = ??????0 + ??????1 ??????1 +??????2 ??????2 +¡+???????????? ???????????? + ¦Å
vinzjeannin@hotmail.com
Choosing factors can be difficult
Much tougher without software
15
16. Variables may not be dependent form each other
ESGF 4IFM Q1 2012
Financial methods such APT (Arbitrage Pricing Theory)
tries to have pure and independent factors
vinzjeannin@hotmail.com
Used a lot in economics
R-Square is very often very poor
16
17. Ratio Investment / GDP , World Bank, developing countries
?????? = 19.5
?5.8???????????????????????????????????????????????????????????? + 6.3???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? + 2??????????????????????????????? ? 1.1?????????????????? ? 2????????????????????????????????????????????????????????????
ESGF 4IFM Q1 2012
Let¡¯s discuss¡
vinzjeannin@hotmail.com
? Corruption: current corruption
? CorruptionPrediction: future corruption
? School: level of education
? GDP: GDP
? Distortion: how badly policies are run
17
18. Opposite effect of corruption variables
Any logic with this?
ESGF 4IFM Q1 2012
The current level of corruption decreases investment
vinzjeannin@hotmail.com
The future level of corruption increases investment
Investors learn how to live with corruption¡
18
19. R-Squared is 0.24, very poor¡
ESGF 4IFM Q1 2012
How to find the right model?
vinzjeannin@hotmail.com
? General to specific: this starts off with a comprehensive
model, including all the likely explanatory variables, then
simplifies it.
? Specific to general: this begins with a simple model that is
easy to understand, then explanatory variables are added to
improve the model¡¯s explanatory power.
19
20. Golden rules
ESGF 4IFM Q1 2012
Be logic
vinzjeannin@hotmail.com
Have the best R-Squared
Not over complicate
20
21. Introduction to econometrics
What is a model? ?????????????????? = ?????????????????????????????? + ?????? with ?????? being a white noise
ESGF 4IFM Q1 2012
3 steps
vinzjeannin@hotmail.com
Identify
Fit
Forecast
21
23. Stationary series are easier to forecast¡ Transform it!
ESGF 4IFM Q1 2012
A series is stationary if the mean and the variance are stable
Which one is more likely to be stationary?
vinzjeannin@hotmail.com
23
24. Properties of stationary series
Same distribution of the following
ESGF 4IFM Q1 2012
(??????1 , ??????2 , ??????3 , ¡ , ???????????? )
(??????2 , ??????3 , ??????4 , ¡ , ????????????+1 )
Distribution not time dependent
vinzjeannin@hotmail.com
Rare occurrence
Stationarity accepted if
??????(???????????? ) = ?????? Constant in the time
24
??????????????????(???????????? , ??????????????????? ) Depends only on n
25. About the residuals¡
White noise!
ESGF 4IFM Q1 2012
Normality test
vinzjeannin@hotmail.com
Have an idea with
Skewness
Kurtosis
Proper tests: KS, Durbin Watson, Portmanteau,¡
25
29. ???????????? = ?????? + ??????1 ?????????????1 + ??????2 ?????????????2 + ? + ???????????? ??????????????????? + ????????????
ESGF 5IFM Q1 2012
???????????? Parameters of the model
???????????? White noise
vinzjeannin@hotmail.com
Auto Regressive model
AR(n)
29
30. Estimations
ESGF 4IFM Q1 2012
Small sample: Binomial Distribution
n! ?????? ?????? = ????????????
f ( x) ? p x (1 ? p) ( n? x )
x!(n ? x)! ?????? ?????? = ????????????(1 ? ??????)
vinzjeannin@hotmail.com
Large sample: Normal Distribution
?
np (?)
N , np p
1 ?
n is the size of the sample, x, the number individuals with the particular characteristic
30
31. Estimate a proportion ??????
?????? =
??????
Binomial Distribution
??????(1 ? ??????)
?????? ?????? = ?????? ?????? ?????? =
ESGF 4IFM Q1 2012
??????
Normal approximation
??????(1 ? ??????)
vinzjeannin@hotmail.com
??????~?????? ??????, Standardisation possible
??????
?????? ? ??????
?????? ? =
??????(1 ? ??????)
??????
?????? ? ~?????? 0,1
Normal approximation works only if 31
???????????? ¡Ý 5 ??????(1 ? ??????) ¡Ý 5
34. Mean estimation
Problem
ESGF 4IFM Q1 2012
The SD of the actual population is unknown
vinzjeannin@hotmail.com
Mean has a Student¡¯s distribution
Similarity with normal
34
35. Student¡¯s properties
? It is symmetric about its mean
? It has a mean of zero
? It has a standard deviation and variance greater than 1.
ESGF 4IFM Q1 2012
? There are actually many t distributions, one for each degree of freedom
? As the sample size increases, the t distribution approaches the normal distribution.
? It is bell shaped.
? The t-scores can be negative or positive, but the probabilities are always positive.
vinzjeannin@hotmail.com
35
Normal-ish distribution in a discrete environment with a
confidence interval
40. ??????1 ? ??????2
?????? ? = ?????? ? = ?0.52298
1 1
??????(1 ? ??????) ?????? + ??????
1 2
ESGF 4IFM Q1 2012
If ??????(?1.96 < ?????? ? < 1.96) = 0.95?the frequencies are the same
with a 95% confidence interval
vinzjeannin@hotmail.com
The frequencies are equal
Their difference is not significant
Actual difference due to fluctuation of samples
40
41. Is a SD difference significant?
???????????? 2 Total variance ???????????? 2 Sample variance
???????????? 2 ???????????? 2
ESGF 4IFM Q1 2012
Total variance Sample variance
Fisher Snedecor distribution
vinzjeannin@hotmail.com
???????????? 2 ???????????? 2
? ~??????(???????????? ? 1, ???????????? ? 1)
???????????? 2 ???????????? 2
41
42. You want to test ???????????? 2 = ???????????? 2
???????????? 2
2 ~??????(???????????? ? 1, ???????????? ? 1)
????????????
ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com
42
45. Games: Beat the Statistics
ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com
Is Martingale safe?
Bet on 2:1, double when you lose¡ 45
Risk of ruin?
46. Bet on 2:1
18
ESGF 4IFM Q1 2012
Is this really 2:1? = 0.4865
37
Obvious how casino is making money!
vinzjeannin@hotmail.com
The probability of the casino to win is always bigger than the
probability of the player to win!
46
47. You¡¯ll be right with a martingale¡ Eventually! But when?
The 2011 recorded record series is 26 reds in Las Vegas, Nevada
ESGF 4IFM Q1 2012
You were on the black and hoping the reversal, you begun with $2
At the 27 round you need
227 = $134,217,728
vinzjeannin@hotmail.com
And don¡¯t forget you lost already
21 + 22 + ? + 226 = $134,217,726
Casino limit stakes
Your pocket may not be deep enough anyway!
And if you win at the 27th roll, you made¡ 47
$2 Quite risky¡
48. ESGF 4IFM Q1 2012
vinzjeannin@hotmail.com
¡°No one can possibly win at roulette unless he
steals money from the table while the
croupier isn¡¯t looking.¡± ¡ª Albert Einstein
48
50. $255, $1 flat bet
$255, $1 start, martingale double when you lose
ESGF 4IFM Q1 2012
Ruin in 255 times for flat bet
Ruin in 8 times for martingale
vinzjeannin@hotmail.com
1,000,000 times comparison, 100 rounds maximum
50