This document describes how to prepare a digital watershed model in JGrass-NewAGE, which is necessary for hydrological simulation. It involves extracting the river network and subbasins from a digital elevation model using tools in the JGrass spatial toolbox. The process includes pit filling, flow direction determination, channel extraction, and subbasin delineation. The outputs are shapefiles of the river network and subbasins along with topological information needed for rainfall-runoff modeling in JGrass-NewAGE.
1 of 5
Download to read offline
More Related Content
Jgrassnewage digital-watershed-model-component
1. MODELING SOLUTION
Digital watershed model in JGrass-NewAGE
Wuletawu Abera*
Correspondence:
wuletawu979@gmail.com
Dipartimento di Ingegneria Civile
Ambientale e Meccanica, Trento,
Mesiano di Povo, Trento, IT
Full list of author information is
available at the end of the article
*
Components Linker
Abstract
This pages illustrate how to prepare the digital watershed model (i.e the GIS
representation of the topographic information that is used in hydrological
simulation). This procedures requires basic knowledge of installing the OMS
console. Digital watershed model (river network and subbasin) is the essential
part for any distributed hydrological simulation. This operation is based on the
JGrass spatial toolbox GIS. It extracts the basin, and provide subbasins and river
channels information such as the Strahler, Hack, Pfafstetter information of the
river links, and some topological information about each subbasin that are
necessary for the rainfall-runo? component of JGrass-NewAge (Adige
component).
@Version:
0.1
@Date:
2016-06-28
@License:
GPL v. 3
@Inputs:
? DEM
? pThres
? pMode (String)
? pNorth, pEast
@Outputs:
? outNet [.shp]
? outBasins [.shp]
@Doc author:: Wuletawu Abera
@References:
? See reference section below
Keywords: OMS; JGrass toolbox, Pfafstatter, HRU, subbasin, basin partition
2. Abera Page 2 of 5
Code Information
The Scripting
Code repository
This points to the .sim ?le that builds the modeling solution
https://drive.google.com/open?id=0B8taAom_i8q_N05UWkw0ZXhmYzg
The jar ?les can be downloaded from:
http://moovida.github.io/jgrasstools/
List of model components used
Users¨ Info
This contains point to the document that the Info more usable by users than de-
velopers, i.e. information about the code usage http://www.github.com
To whom address questions
giuseppe.formetta@unical.it wuletawu979@gmail.com marialaura.bancheri@unitn.it
Authors of documentation
Wuletawu Abera (wuletawu979@gmail.com)
This documentation is released under Creative Commons 4.0 Attribution International
3. Abera Page 3 of 5
Overall scope of the Modeling Solution
This modelling solution is to prepare the GIS information that is needed for the
other JGrass-NewAge components, particularly for ADIGE component. It uses dig-
ital elevation model and follows a series of tasks that ranges from pit ?lling of the
DEM to the ?nal extraction of the channels and subbasins or HRU, and each links
are enumerated according to the Pfafstetter schemes. Detail description of is given
in [1, 2]
Components diagram
The DWM component is base AGIGE component and the input is the DEM data,
and location of the basin outlets. It combined a series of tools (more than 12 tools)
and the connection between the tools is based on OMS3 framework. The graphical
presentation of the work ?ow is presented in ?gure 1
Figure 1 Modelling Solution for the characterisation of basin partition
Sim File Snippets
import oms3 . SimBuilder as OMS3
def dir = oms prj
def HM =  ̄ org . j g r a s s t o o l s . hortonmachine . modules ̄
def GEARS =  ̄ org . j g r a s s t o o l s . gears  ̄
OMS3. sim run (name : ̄DWM ̄ , {
resource  ̄ $oms prj / l i b  ̄
model () {
components {
 ̄ rasterReader  ̄  ̄${GEARS}. io . r a s te r r e a d er . OmsRasterReader ̄
 ̄VectorReader ̄  ̄${GEARS}. io . s h a p e f i l e . OmsShapefileFeatureReader  ̄
4. Abera Page 4 of 5
 ̄ subbsin rasterWritter  ̄  ̄${GEARS}. io . r a s t e r w r i t e r . OmsRasterWriter ̄
 ̄ p i t f i l l e r  ̄  ̄${HM}. demmanipulation . p i t f i l l e r . OmsPitfiller  ̄
 ̄ flowdir  ̄  ̄${HM}. geomorphology . flow . OmsFlowDirections ̄
 ̄DrainDir ̄  ̄${HM}. geomorphology . draindir . OmsDrainDir ̄
 ̄ markoutlets  ̄  ̄${HM}. demmanipulation . markoutlets . OmsMarkoutlets ̄
 ̄ extractnetwork  ̄  ̄${HM}. network . extractnetwork . OmsExtractNetwork ̄
 ̄ wateroutlet  ̄  ̄${HM}. demmanipulation . wateroutlet . OmsWateroutlet ̄
 ̄ pitcutout  ̄  ̄${GEARS}. modules . r . cutout . OmsCutOut ̄
 ̄netnumbering ̄  ̄${HM}. network . netnumbering . OmsNetNumbering ̄
 ̄ networkattributes  ̄  ̄${HM}. network . networkattributes . OmsNetworkAttributesBuild
 ̄ Basinshape  ̄  ̄${HM}. basin . basinshape . BasinShape ̄
 ̄RastCat ̄  ̄${GEARS}. modules . v . r a s t e r c a t t o f e a t u r e a t t r i b u t e . OmsRasterCatT
 ̄VectorReshaper ̄  ̄${GEARS}. modules . v . vectorreshaper . OmsVectorReshaper ̄
 ̄ Writter V net  ̄  ̄${GEARS}. io . s h a p e f i l e . OmsShapefileFeatureWriter  ̄
 ̄ Writter V basin  ̄  ̄${GEARS}. io . s h a p e f i l e . OmsShapefileFeatureWriter  ̄
}
parameter {
 ̄ rasterReader . f i l e  ̄  ̄${ dir }/ data/DEM. asc  ̄
 ̄ rasterReader . fileNovalue  ̄  ̄ ?9999.0 ̄
 ̄ subbsin rasterWritter . f i l e  ̄  ̄${ dir }/ output/ subbassin . asc  ̄
 ̄ extractnetwork . pThres ̄ 3000
//  ̄netnumbering . pMode ̄ 1
//  ̄netnumbering . fPointId  ̄  ̄Id ̄
 ̄RastCat . pPos ̄  ̄MIDDLE ̄
 ̄RastCat . fNew ̄  ̄netnum ̄
 ̄VectorReshaper . pCql ̄  ̄ ̄ ̄netnum=round (netnum) ̄ ̄ ̄
 ̄ Writter V net . f i l e  ̄  ̄${ dir }/ output/ Network final . shp ̄
 ̄ Writter V basin . f i l e  ̄  ̄${ dir }/ output/ Subbasin final . shp ̄
}
connect {
 ̄ rasterReader . outRaster  ̄  ̄ p i t f i l l e r . inElev  ̄
 ̄ p i t f i l l e r . outPit  ̄  ̄ flowdir . inPit  ̄
 ̄ p i t f i l l e r . outPit  ̄  ̄DrainDir . inPit  ̄
 ̄ flowdir . outFlow ̄  ̄DrainDir . inFlow ̄
 ̄DrainDir . outFlow ̄  ̄ markoutlets . inFlow ̄
// extract the network r a s t e r map
 ̄DrainDir . outTca ̄  ̄ extractnetwork . inTca ̄
// ̄ extractnetwork . outNet ̄  ̄ rasterWritter . inRaster  ̄
// v e c t o r i z e the network and various enumeration scheme
 ̄ p i t f i l l e r . outPit  ̄  ̄ networkattributes . inDem ̄
 ̄ markoutlets . outFlow ̄  ̄ networkattributes . inFlow ̄
 ̄ extractnetwork . outNet ̄  ̄ networkattributes . inNet ̄
 ̄DrainDir . outTca ̄  ̄ networkattributes . inTca ̄
//  ̄ networkattributes . outNet ̄  ̄ Writter V net . geodata  ̄
5. Abera Page 5 of 5
// extract the r a s t e r subbasin map
 ̄DrainDir . outTca ̄  ̄netnumbering . inTca ̄
 ̄ markoutlets . outFlow ̄  ̄netnumbering . inFlow ̄
 ̄ extractnetwork . outNet ̄  ̄netnumbering . inNet ̄
//  ̄VectorReader . geodata  ̄  ̄netnumbering . inPoints  ̄
 ̄netnumbering . outBasins  ̄  ̄ subbsin rasterWritter . inRaster  ̄
//  ̄netnumbering . outNetnum ̄  ̄ rasterWritter . inRaster  ̄
// v e c t o r i z e the r a s t e r subbasin map
 ̄ p i t f i l l e r . outPit  ̄  ̄ Basinshape . inElev  ̄
 ̄netnumbering . outBasins  ̄  ̄ Basinshape . inBasins  ̄
 ̄ Basinshape . outBasins  ̄  ̄ Writter V basin . geodata  ̄
// add netnum ID to network coding system
 ̄netnumbering . outBasins  ̄  ̄RastCat . inRaster  ̄
 ̄ networkattributes . outNet ̄  ̄RastCat . inVector  ̄
// round netnum ID to integer
 ̄RastCat . outVector  ̄  ̄VectorReshaper . inVector  ̄
// Finaly write the subbasin map
 ̄VectorReshaper . outVector  ̄  ̄ Writter V net . geodata  ̄
}
}
})
Data necessary to reproduce the MS
The project that contain the DEM, the sim ?le and all the necessary jar
?le can be accessed at https://drive.google.com/open?id=0B8taAom_i8q_
NDhXZ2p3NXh3TzQ, and it is possible to do the basin partition automatically.
References
1. Abera, W., Antonello, A., Franceschi, S., Formetta, G., Rigon, R.: The uDig Spatial Toolbox for
Hydro-geomorphic Analysis, In: Clarke & nield (eds.) geomorphological techniques (online edition) edn. British
Society for Geomorphology, London, UK (2014)
2. Formetta, G., Antonello, A., Franceschi, S., David, O., R., R.: The basin delineation and the built of a digital
watershed model within the jgrass-newage system. Bolet?n Geol?gico y Minero: Special Issue  ̄Advanced GIS
terrain analysis for geophysical applications (2014)