際際滷

際際滷Share a Scribd company logo
QUIZ FOR UTS (MID TERM TEST)
COMPUTER APPLICATION
LECTURER :TatanZaenalMutakin, M.Pd.
YUNUS : 20187479096
PROGRAM MAGISTER PENDIDIKAN BAHASA INGGRIS
UNIVERSITAS INDRAPRASTA PGRI
2020
1. Out put datda dalam bentuk Microsoft Word
Model Summary
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate
1 ,419a
,176 ,147 10,200
a. Predictors: (Constant), Minat Belajar, Motivasi Belajar
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1 Regression 1266,124 2 633,062 6,084 ,004b
Residual 5930,726 57 104,048
Total 7196,850 59
a. Dependent Variable: Prestasi Belajar
b. Predictors: (Constant), Minat Belajar, Motivasi Belajar
Coefficientsa
Model
Unstandardized Coefficients
Standardized
Coefficients
t Sig.B Std. Error Beta
1 (Constant) 10,359 24,836 ,417 ,678
Motivasi Belajar ,043 ,205 ,027 ,212 ,833
Minat Belajar ,690 ,211 ,411 3,274 ,002
a. Dependent Variable: Prestasi Belajar
2. Interpretasi Tabel Penelitian
Tiga tabel diatas merupakan tabel hasil uji hipotesis regresi linear berganda,
yang terdiri dari tabel model summary, tabel anova, dan tabel coefficients.
1. Hasil Penelitian (Menjawab rumusan masalah)
a. Terdapat pengaruh yang signifikan antara Motivasi Belajar dan Minat belajar
secara bersama-sama terhadap Prestasi Belajar. Hal ini dibuktikan dengan nilai
Sig.= 0,004 < 0,01 dan Fhitung= 6,084
b. Tidak terdapat pengaruh yang signifikan antara Motivasi Belajar terhadap
Prestasi Belajar. Hal ini dibuktikan dengan nilai Sig.= 0,833 > 0,01 dan thitung=
0,212
c. Terdapat pengaruh yang signifikan antara Minat belajar terhadap Prestasi
Belajar. Hal ini dibuktikan dengan nilai Sig.= 0,002 < 0,01 dan thitung= 3,274
2. Hubungan antara Motivasi Belajar dan Minat belajar secara bersama-sama terhadap
Prestasi Belajar adalah sedang. Hal ini dibuktikan dengan nilai korelasi (R) = 0,419
Kriteria:
0,000  0,199 = Sangat Lemah
0,200  0,399 = Lemah
0,400  0,599 = Sedang
0,600  0,799 = Kuat
0,800  1,000 = Sangat Kuat
3. Kontribusi Motivasi Belajar dan Minat belajar secara bersama-sama terhadap Prestasi
Belajar sebesar 0,176 x 100 % = 17.6%(nilai Rsquare x 100%)
4. Persamaan garis regresi ganda:
Y = 10,359 + 0,043 X1 + 0,690 X2
Adapun untuk kontribusi parsial, maka akan dilakukan pengujian tambahan sbb:
Copy table coefiicients
Coefficientsa
Model
Unstandardized
Coefficients
Standardized
Coefficients
t Sig.
Correlations
B Std. Error Beta
Zero-
order Partial Part
1 (Constant) 10,359 24,836 ,417 ,678
Motivasi
Belajar
,043 ,205 ,027 ,212 ,833 ,145 ,028 ,026
Minat
Belajar
,690 ,211 ,411 3,274 ,002 ,419 ,398 ,394
a. Dependent Variable: Prestasi Belajar
Penjelasan:
1. Kontribusi parsial X1 terhadap Y adalah nilai Beta x nilai Zero-order (nilai korelasinya) x
100%, yaitu:
0,027 x 0,145 x 100% = 0.39%
2. Kontribusi parsial X2 terhadap Y adalah nilai Beta x nilai Zero-order (nilai kolerasinya) x
100%, yaitu:
0,411 x 0,419 x 100%= 17,22%
3. Kontribusi ganda adalah penjumlahan dari kontribusi parsial X1 dan X2, yaitu:
0.39 + 17,22 = 17,61 % (nilai Rsquare x 100%)
LAMPIRAN:
OUTPUT PENGOLAHAN DATA SYNTAX
UJI HIPOTESIS
Error # 1. Command name: UJI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN (.05) POUT (.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2.
Regression
Notes
Output Created 01-JUN-2020 20:50:24
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on cases with no
missing values for any variable used.
Syntax REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN (.05) POUT (.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2.
Resources Processor Time 00:00:00,05
Elapsed Time 00:00:00,05
Memory Required 1652 bytes
Additional Memory Required for
Residual Plots
0 bytes
Variables Entered/Removeda
Model Variables Entered
Variables
Removed Method
1 Minat Belajar,
Motivasi Belajarb
. Enter
a. Dependent Variable: Prestasi Belajar
b. All requested variables entered.
Model Summary
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate
1 ,419a
,176 ,147 10,200
a. Predictors: (Constant), Minat Belajar, Motivasi Belajar
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1 Regression 1266,124 2 633,062 6,084 ,004b
Residual 5930,726 57 104,048
Total 7196,850 59
a. Dependent Variable: Prestasi Belajar
b. Predictors: (Constant), Minat Belajar, Motivasi Belajar
Coefficientsa
Model
Unstandardized Coefficients
Standardized
Coefficients
t Sig.B Std. Error Beta
1 (Constant) 10,359 24,836 ,417 ,678
Motivasi Belajar ,043 ,205 ,027 ,212 ,833
Minat Belajar ,690 ,211 ,411 3,274 ,002
a. Dependent Variable: Prestasi Belajar
DESKRIPSI DATA
Error # 1. Command name: DESKRIPSI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
FREQUENCIES VARIABLES=Y
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Frequencies
Notes
Output Created 01-JUN-2020 20:50:24
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on all cases with valid
data.
Syntax FREQUENCIES VARIABLES=Y
/STATISTICS=STDDEV MINIMUM
MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Resources Processor Time 00:00:00,70
Elapsed Time 00:00:00,59
Statistics
Prestasi Belajar
N Valid 60
Missing 0
Mean 85,05
Median 90,00
Mode 90
Std. Deviation 11,044
Minimum 60
Maximum 99
Prestasi Belajar
Frequency Percent Valid Percent
Cumulative
Percent
Valid 60 3 5,0 5,0 5,0
69 1 1,7 1,7 6,7
70 8 13,3 13,3 20,0
75 1 1,7 1,7 21,7
79 10 16,7 16,7 38,3
90 26 43,3 43,3 81,7
99 11 18,3 18,3 100,0
Total 60 100,0 100,0
FREQUENCIES VARIABLES=X1
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Frequencies
Notes
Output Created 01-JUN-2020 20:50:25
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on all cases with valid
data.
Syntax FREQUENCIES VARIABLES=X1
/STATISTICS=STDDEV MINIMUM
MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Resources Processor Time 00:00:00,62
Elapsed Time 00:00:00,64
Statistics
Motivasi Belajar
N Valid 60
Missing 0
Mean 97,70
Median 97,00
Mode 99
Std. Deviation 6,778
Minimum 77
Maximum 111
Motivasi Belajar
Frequency Percent Valid Percent
Cumulative
Percent
Valid 77 2 3,3 3,3 3,3
90 5 8,3 8,3 11,7
91 5 8,3 8,3 20,0
94 1 1,7 1,7 21,7
95 5 8,3 8,3 30,0
96 10 16,7 16,7 46,7
97 4 6,7 6,7 53,3
99 11 18,3 18,3 71,7
100 1 1,7 1,7 73,3
104 8 13,3 13,3 86,7
106 3 5,0 5,0 91,7
107 2 3,3 3,3 95,0
111 3 5,0 5,0 100,0
Total 60 100,0 100,0
FREQUENCIES VARIABLES=X2
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Frequencies
Notes
Output Created 01-JUN-2020 20:50:25
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on all cases with valid
data.
Syntax FREQUENCIES VARIABLES=X2
/STATISTICS=STDDEV MINIMUM
MAXIMUM MEAN MEDIAN MODE
/HISTOGRAM NONORMAL
/ORDER=ANALYSIS.
Resources Processor Time 00:00:00,69
Elapsed Time 00:00:00,50
Statistics
Minat Belajar
N Valid 60
Missing 0
Mean 102,10
Median 97,00
Mode 97
Std. Deviation 6,579
Minimum 96
Maximum 116
Minat Belajar
Frequency Percent Valid Percent
Cumulative
Percent
Valid 96 14 23,3 23,3 23,3
97 18 30,0 30,0 53,3
106 14 23,3 23,3 76,7
107 8 13,3 13,3 90,0
116 6 10,0 10,0 100,0
Total 60 100,0 100,0
UJI NORMALITAS DATA
Error # 1. Command name: UJI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
NPAR TESTS
/K-S (NORMAL)= X1 X2 Y
/MISSING ANALYSIS.
NPar Tests
Notes
Output Created 01-JUN-2020 20:50:26
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics for each test are based on all
cases with valid data for the variable(s) used
in that test.
Syntax NPAR TESTS
/K-S (NORMAL)= X1 X2 Y
/MISSING ANALYSIS.
Resources Processor Time 00:00:00,02
Elapsed Time 00:00:00,01
Number of Cases Alloweda
262144
a. Based on availability of workspace memory.
One-Sample Kolmogorov-Smirnov Test
Motivasi Belajar Minat Belajar Prestasi Belajar
N 60 60 60
Normal Parametersa,b
Mean 97,70 102,10 85,05
Std. Deviation 6,778 6,579 11,044
Most Extreme Differences Absolute ,141 ,314 ,290
Positive ,141 ,314 ,144
Negative -,129 -,190 -,290
Test Statistic ,141 ,314 ,290
Asymp. Sig. (2-tailed) ,005c
,000c
,000c
a. Test distribution is Normal.
b. Calculated from data.
c. Lilliefors Significance Correction.
UJI LINEARITAS
Error # 1. Command name: UJI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
MEANS TABLES=Y BY X1 X2
/CELLS MEAN COUNT STDDEV
/STATISTICS LINEARITY.
Means
Notes
Output Created 01-JUN-2020 20:50:26
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing For each dependent variable in a table,
user-defined missing values for the
dependent and all grouping variables are
treated as missing.
Cases Used Cases used for each table have no missing
values in any independent variable, and not
all dependent variables have missing
values.
Syntax MEANS TABLES=Y BY X1 X2
/CELLS MEAN COUNT STDDEV
/STATISTICS LINEARITY.
Resources Processor Time 00:00:00,05
Elapsed Time 00:00:00,06
Case Processing Summary
Cases
Included Excluded Total
N Percent N Percent N Percent
Prestasi Belajar * Motivasi
Belajar
60 100,0% 0 0,0% 60 100,0%
Prestasi Belajar * Minat Belajar 60 100,0% 0 0,0% 60 100,0%
Prestasi Belajar * Motivasi Belajar
Report
Prestasi Belajar
Motivasi Belajar Mean N Std. Deviation
77 90,00 2 ,000
90 82,60 5 11,760
91 87,80 5 10,686
94 90,00 1 .
95 83,80 5 9,066
96 78,70 10 11,086
97 84,50 4 6,351
99 82,36 11 15,240
100 79,00 1 .
104 88,38 8 9,724
106 96,00 3 5,196
107 94,50 2 6,364
111 89,33 3 10,017
Total 85,05 60 11,044
ANOVA Table
Sum of Squares df Mea
Prestasi Belajar * Motivasi
Belajar
Between Groups (Combined) 1351,363 12
Linearity 151,063 1
Deviation from Linearity 1200,300 11
Within Groups 5845,487 47
Total 7196,850 59
Measures of Association
R R Squared Eta Eta Squared
Prestasi Belajar * Motivasi
Belajar
,145 ,021 ,433 ,188
Prestasi Belajar * Minat Belajar
Report
Prestasi Belajar
Minat Belajar Mean N Std. Deviation
96 80,79 14 13,979
97 81,39 18 9,793
106 87,29 14 9,051
107 89,75 8 8,956
116 94,50 6 4,930
Total 85,05 60 11,044
ANOVA Table
Sum of Squares df Mea
Prestasi Belajar * Minat Belajar Between Groups (Combined) 1278,358 4
Linearity 1261,435 1
Deviation from Linearity 16,923 3
Within Groups 5918,492 55
Total 7196,850 59
Measures of Association
R R Squared Eta Eta Squared
Prestasi Belajar * Minat Belajar ,419 ,175 ,421 ,178
UJI MULTIKOLENIARITAS DAN HETEROSKEDASTSITAS
Error # 1. Command name: UJI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP
/CRITERIA=PIN (.05) POUT (.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2
/SCATTERPLOT= ( *ZRESID, *ZPRED))
/RESIDUALS HISTOGRAM (ZRESID) NORMPROB (ZRESID)
/SAVE RESID.
Regression
Notes
Output Created 01-JUN-2020 20:50:26
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on cases with no
missing values for any variable used.
Syntax REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR
SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
COLLIN TOL CHANGE ZPP
/CRITERIA=PIN (.05) POUT (.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2
/SCATTERPLOT= ( *ZRESID, *ZPRED))
/RESIDUALS HISTOGRAM (ZRESID)
NORMPROB (ZRESID)
/SAVE RESID.
Resources Processor Time 00:00:00,00
Elapsed Time 00:00:00,01
Warnings
Missing left parenthesis on REGRESSION SCATTERPLOT command--A left parenthesis '(' is
expected in the SCATTERPLOT subcommand but is not found. You must specify the variables to be
plotted in parentheses. For example, '/SCAT (*RESID,INCOME)' produces a scatterplot of the
residual with the variable INCOME Text found: ).
Execution of this command stops.
*WARNING* REGRESSION syntax scan continues. Further diagnostics from this command may be
misleading - interpret with care.
UJI NORMALITAS GALAT
Error # 1. Command name: UJI
The first word in the line is not recognized as an SPSS Statistics command.
Execution of this command stops.
NPAR TESTS
/K-S (NORMAL) =RES 1
/MISSING ANALYSIS.
NPar Tests
Notes
Output Created 01-JUN-2020 20:50:26
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics for each test are based on all
cases with valid data for the variable(s) used
in that test.
Syntax NPAR TESTS
/K-S (NORMAL) =RES 1
/MISSING ANALYSIS.
Resources Processor Time 00:00:00,00
Elapsed Time 00:00:00,01
Warnings
Text: RES Command: NPAR TESTS
An undefined variable name, or a scratch or system variable was specified in a variable list which
accepts only standard variables. Check spelling and verify the existence of this variable.
Execution of this command stops.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2.
Regression
Notes
Output Created 01-JUN-2020 21:34:30
Comments
Input Data D:UNINDRA PGRI JAKARTA 2019SMT
3SMT 3COMPUTER APPLICATIONtugas
utsFILE EXCEL TUGAS UTS_YUNUS.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 60
Missing Value Handling Definition of Missing User-defined missing values are treated as
missing.
Cases Used Statistics are based on cases with no
missing values for any variable used.
Syntax REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
ZPP
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT Y
/METHOD=ENTER X1 X2.
Resources Processor Time 00:00:00,03
Elapsed Time 00:00:00,03
Memory Required 1652 bytes
Additional Memory Required for
Residual Plots
0 bytes
Variables Entered/Removeda
Model Variables Entered
Variables
Removed Method
1 Minat Belajar,
Motivasi Belajarb
. Enter
a. Dependent Variable: Prestasi Belajar
b. All requested variables entered.
Model Summary
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate
1 ,419a
,176 ,147 10,200
a. Predictors: (Constant), Minat Belajar, Motivasi Belajar
ANOVAa
Model Sum of Squares df Mean Square F Sig.
1 Regression 1266,124 2 633,062 6,084 ,004b
Residual 5930,726 57 104,048
Total 7196,850 59
a. Dependent Variable: Prestasi Belajar
b. Predictors: (Constant), Minat Belajar, Motivasi Belajar
Coefficientsa
Model
Unstandardized
Coefficients
Standardized
Coefficients
t Sig.
Correlations
B Std. Error Beta Zero-order Partial Part
1 (Constant) 10,359 24,836 ,417 ,678
Motivasi
Belajar
,043 ,205 ,027 ,212 ,833 ,145 ,028 ,026
Minat Belajar ,690 ,211 ,411 3,274 ,002 ,419 ,398 ,394
a. Dependent Variable: Prestasi Belajar

More Related Content

Similar to Tugas quiz SPSS (20)

Implementing and analyzing online experiments
Implementing and analyzing online experimentsImplementing and analyzing online experiments
Implementing and analyzing online experiments
Sean Taylor
Output
OutputOutput
Output
Katrice Hall
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
Shibaprasad Bhattacharya
Univariate Analysis of Variance in the value.pptx
Univariate Analysis of Variance in the value.pptxUnivariate Analysis of Variance in the value.pptx
Univariate Analysis of Variance in the value.pptx
ManSumantri
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Bab 8
Bab 8Bab 8
Bab 8
NORHIDAYAHAZNIBINTIM
Anova Presentation
Anova PresentationAnova Presentation
Anova Presentation
Wyena Cheah
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
A Multi-Objective Genetic Algorithm for Pruning Support Vector MachinesA Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
Mohamed Farouk
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docxInstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
dirkrplav
SC968 Panel data methods for sociologists-Lecture 1, part 1
SC968Panel data methods for sociologists-Lecture 1, part 1SC968Panel data methods for sociologists-Lecture 1, part 1
SC968 Panel data methods for sociologists-Lecture 1, part 1
GulbinErdem1
regresi linear PERTEMUAN 3 (MT), English.pptx
regresi linear PERTEMUAN 3 (MT), English.pptxregresi linear PERTEMUAN 3 (MT), English.pptx
regresi linear PERTEMUAN 3 (MT), English.pptx
abdnor
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
joycemi_la
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
joycemi_la
Measures of Central Tendency.pptx
Measures of Central Tendency.pptxMeasures of Central Tendency.pptx
Measures of Central Tendency.pptx
Melba Shaya Sweety
Csci101 lect08b matlab_programs
Csci101 lect08b matlab_programsCsci101 lect08b matlab_programs
Csci101 lect08b matlab_programs
Elsayed Hemayed
CSL0777-L07.pptx
CSL0777-L07.pptxCSL0777-L07.pptx
CSL0777-L07.pptx
KonkoboUlrichArthur
Towards Evaluating Size Reduction Techniques for Software Model Checking
Towards Evaluating Size Reduction Techniques for Software Model CheckingTowards Evaluating Size Reduction Techniques for Software Model Checking
Towards Evaluating Size Reduction Techniques for Software Model Checking
Akos Hajdu
Ml2 train test-splits_validation_linear_regression
Ml2 train test-splits_validation_linear_regressionMl2 train test-splits_validation_linear_regression
Ml2 train test-splits_validation_linear_regression
ankit_ppt
Implementing and analyzing online experiments
Implementing and analyzing online experimentsImplementing and analyzing online experiments
Implementing and analyzing online experiments
Sean Taylor
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
APPLICATION OF STATISTICAL LEARNING TECHNIQUES AS PREDICTIVE TOOLS FOR MACHIN...
Shibaprasad Bhattacharya
Univariate Analysis of Variance in the value.pptx
Univariate Analysis of Variance in the value.pptxUnivariate Analysis of Variance in the value.pptx
Univariate Analysis of Variance in the value.pptx
ManSumantri
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Dalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-bDalut ppt. of factorial analysis of variance-b
Dalut ppt. of factorial analysis of variance-b
Ian Kris Lastimosa
Anova Presentation
Anova PresentationAnova Presentation
Anova Presentation
Wyena Cheah
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
A Multi-Objective Genetic Algorithm for Pruning Support Vector MachinesA Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
A Multi-Objective Genetic Algorithm for Pruning Support Vector Machines
Mohamed Farouk
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docxInstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
InstructionsView CAAE Stormwater video Too Big for Our Ditches.docx
dirkrplav
SC968 Panel data methods for sociologists-Lecture 1, part 1
SC968Panel data methods for sociologists-Lecture 1, part 1SC968Panel data methods for sociologists-Lecture 1, part 1
SC968 Panel data methods for sociologists-Lecture 1, part 1
GulbinErdem1
regresi linear PERTEMUAN 3 (MT), English.pptx
regresi linear PERTEMUAN 3 (MT), English.pptxregresi linear PERTEMUAN 3 (MT), English.pptx
regresi linear PERTEMUAN 3 (MT), English.pptx
abdnor
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
joycemi_la
Variable Selection Methods
Variable Selection MethodsVariable Selection Methods
Variable Selection Methods
joycemi_la
Measures of Central Tendency.pptx
Measures of Central Tendency.pptxMeasures of Central Tendency.pptx
Measures of Central Tendency.pptx
Melba Shaya Sweety
Csci101 lect08b matlab_programs
Csci101 lect08b matlab_programsCsci101 lect08b matlab_programs
Csci101 lect08b matlab_programs
Elsayed Hemayed
Towards Evaluating Size Reduction Techniques for Software Model Checking
Towards Evaluating Size Reduction Techniques for Software Model CheckingTowards Evaluating Size Reduction Techniques for Software Model Checking
Towards Evaluating Size Reduction Techniques for Software Model Checking
Akos Hajdu
Ml2 train test-splits_validation_linear_regression
Ml2 train test-splits_validation_linear_regressionMl2 train test-splits_validation_linear_regression
Ml2 train test-splits_validation_linear_regression
ankit_ppt

Recently uploaded (20)

Azure Solution Architect Interview Questions By ScholarHat
Azure Solution Architect Interview Questions By ScholarHatAzure Solution Architect Interview Questions By ScholarHat
Azure Solution Architect Interview Questions By ScholarHat
Scholarhat
Digital Tools with AI for e-Content Development.pptx
Digital Tools with AI for e-Content Development.pptxDigital Tools with AI for e-Content Development.pptx
Digital Tools with AI for e-Content Development.pptx
Dr. Sarita Anand
Azure Data Engineer Interview Questions By ScholarHat
Azure Data Engineer Interview Questions By ScholarHatAzure Data Engineer Interview Questions By ScholarHat
Azure Data Engineer Interview Questions By ScholarHat
Scholarhat
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAHBISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
coacharyasetiyaki
Azure Administrator Interview Questions By ScholarHat
Azure Administrator Interview Questions By ScholarHatAzure Administrator Interview Questions By ScholarHat
Azure Administrator Interview Questions By ScholarHat
Scholarhat
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷sHow to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
Celine George
Rest API Interview Questions PDF By ScholarHat
Rest API Interview Questions PDF By ScholarHatRest API Interview Questions PDF By ScholarHat
Rest API Interview Questions PDF By ScholarHat
Scholarhat
DBMS Interview Questions PDF By ScholarHat
DBMS Interview Questions PDF By ScholarHatDBMS Interview Questions PDF By ScholarHat
DBMS Interview Questions PDF By ScholarHat
Scholarhat
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdfNUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
Dolisha Warbi
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptxFinal-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
jennifersayong3
Meeting the needs of modern students?, Selina McCoy
Meeting the needs of modern students?, Selina McCoyMeeting the needs of modern students?, Selina McCoy
Meeting the needs of modern students?, Selina McCoy
Economic and Social Research Institute
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.pptAnnex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
joan dalilis
How to Unblock Payment in Odoo 18 Accounting
How to Unblock Payment in Odoo 18 AccountingHow to Unblock Payment in Odoo 18 Accounting
How to Unblock Payment in Odoo 18 Accounting
Celine George
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.pptAnnex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
joan dalilis
cervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdfcervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdf
SamarHosni3
Effective Product Variant Management in Odoo 18
Effective Product Variant Management in Odoo 18Effective Product Variant Management in Odoo 18
Effective Product Variant Management in Odoo 18
Celine George
How to Configure Deliver Content by Email in Odoo 18 Sales
How to Configure Deliver Content by Email in Odoo 18 SalesHow to Configure Deliver Content by Email in Odoo 18 Sales
How to Configure Deliver Content by Email in Odoo 18 Sales
Celine George
Discharge procedure and its types in hospital .pptx
Discharge procedure and its types in hospital .pptxDischarge procedure and its types in hospital .pptx
Discharge procedure and its types in hospital .pptx
PoojaSen20
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptxGRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
AngellieMaeDoce
ASP.NET Web API Interview Questions By Scholarhat
ASP.NET Web API Interview Questions By ScholarhatASP.NET Web API Interview Questions By Scholarhat
ASP.NET Web API Interview Questions By Scholarhat
Scholarhat
Azure Solution Architect Interview Questions By ScholarHat
Azure Solution Architect Interview Questions By ScholarHatAzure Solution Architect Interview Questions By ScholarHat
Azure Solution Architect Interview Questions By ScholarHat
Scholarhat
Digital Tools with AI for e-Content Development.pptx
Digital Tools with AI for e-Content Development.pptxDigital Tools with AI for e-Content Development.pptx
Digital Tools with AI for e-Content Development.pptx
Dr. Sarita Anand
Azure Data Engineer Interview Questions By ScholarHat
Azure Data Engineer Interview Questions By ScholarHatAzure Data Engineer Interview Questions By ScholarHat
Azure Data Engineer Interview Questions By ScholarHat
Scholarhat
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAHBISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
BISNIS BERKAH BERANGKAT KE MEKKAH ISTIKMAL SYARIAH
coacharyasetiyaki
Azure Administrator Interview Questions By ScholarHat
Azure Administrator Interview Questions By ScholarHatAzure Administrator Interview Questions By ScholarHat
Azure Administrator Interview Questions By ScholarHat
Scholarhat
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷sHow to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
How to Setup WhatsApp in Odoo 17 - Odoo 際際滷s
Celine George
Rest API Interview Questions PDF By ScholarHat
Rest API Interview Questions PDF By ScholarHatRest API Interview Questions PDF By ScholarHat
Rest API Interview Questions PDF By ScholarHat
Scholarhat
DBMS Interview Questions PDF By ScholarHat
DBMS Interview Questions PDF By ScholarHatDBMS Interview Questions PDF By ScholarHat
DBMS Interview Questions PDF By ScholarHat
Scholarhat
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdfNUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
NUTRITIONAL ASSESSMENT AND EDUCATION - 5TH SEM.pdf
Dolisha Warbi
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptxFinal-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
Final-PPT-on-Reading-Comprehension-in-the-Early-Years.pptx
jennifersayong3
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.pptAnnex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
Annex-C-1_COT-Rubric-for-Proficient-Teacher-_1_.ppt
joan dalilis
How to Unblock Payment in Odoo 18 Accounting
How to Unblock Payment in Odoo 18 AccountingHow to Unblock Payment in Odoo 18 Accounting
How to Unblock Payment in Odoo 18 Accounting
Celine George
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.pptAnnex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
Annex-A_PMES-Tool-for-Proficient-Teachers-SY-2024-2025.ppt
joan dalilis
cervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdfcervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdf
SamarHosni3
Effective Product Variant Management in Odoo 18
Effective Product Variant Management in Odoo 18Effective Product Variant Management in Odoo 18
Effective Product Variant Management in Odoo 18
Celine George
How to Configure Deliver Content by Email in Odoo 18 Sales
How to Configure Deliver Content by Email in Odoo 18 SalesHow to Configure Deliver Content by Email in Odoo 18 Sales
How to Configure Deliver Content by Email in Odoo 18 Sales
Celine George
Discharge procedure and its types in hospital .pptx
Discharge procedure and its types in hospital .pptxDischarge procedure and its types in hospital .pptx
Discharge procedure and its types in hospital .pptx
PoojaSen20
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptxGRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
GRADE-1-QUARTER 4-MATHEMATICS-WEEK-3.pptx
AngellieMaeDoce
ASP.NET Web API Interview Questions By Scholarhat
ASP.NET Web API Interview Questions By ScholarhatASP.NET Web API Interview Questions By Scholarhat
ASP.NET Web API Interview Questions By Scholarhat
Scholarhat

Tugas quiz SPSS

  • 1. QUIZ FOR UTS (MID TERM TEST) COMPUTER APPLICATION LECTURER :TatanZaenalMutakin, M.Pd. YUNUS : 20187479096 PROGRAM MAGISTER PENDIDIKAN BAHASA INGGRIS UNIVERSITAS INDRAPRASTA PGRI 2020
  • 2. 1. Out put datda dalam bentuk Microsoft Word Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 ,419a ,176 ,147 10,200 a. Predictors: (Constant), Minat Belajar, Motivasi Belajar ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 1266,124 2 633,062 6,084 ,004b Residual 5930,726 57 104,048 Total 7196,850 59 a. Dependent Variable: Prestasi Belajar b. Predictors: (Constant), Minat Belajar, Motivasi Belajar Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig.B Std. Error Beta 1 (Constant) 10,359 24,836 ,417 ,678 Motivasi Belajar ,043 ,205 ,027 ,212 ,833 Minat Belajar ,690 ,211 ,411 3,274 ,002 a. Dependent Variable: Prestasi Belajar 2. Interpretasi Tabel Penelitian Tiga tabel diatas merupakan tabel hasil uji hipotesis regresi linear berganda, yang terdiri dari tabel model summary, tabel anova, dan tabel coefficients. 1. Hasil Penelitian (Menjawab rumusan masalah) a. Terdapat pengaruh yang signifikan antara Motivasi Belajar dan Minat belajar secara bersama-sama terhadap Prestasi Belajar. Hal ini dibuktikan dengan nilai Sig.= 0,004 < 0,01 dan Fhitung= 6,084 b. Tidak terdapat pengaruh yang signifikan antara Motivasi Belajar terhadap Prestasi Belajar. Hal ini dibuktikan dengan nilai Sig.= 0,833 > 0,01 dan thitung= 0,212
  • 3. c. Terdapat pengaruh yang signifikan antara Minat belajar terhadap Prestasi Belajar. Hal ini dibuktikan dengan nilai Sig.= 0,002 < 0,01 dan thitung= 3,274 2. Hubungan antara Motivasi Belajar dan Minat belajar secara bersama-sama terhadap Prestasi Belajar adalah sedang. Hal ini dibuktikan dengan nilai korelasi (R) = 0,419 Kriteria: 0,000 0,199 = Sangat Lemah 0,200 0,399 = Lemah 0,400 0,599 = Sedang 0,600 0,799 = Kuat 0,800 1,000 = Sangat Kuat 3. Kontribusi Motivasi Belajar dan Minat belajar secara bersama-sama terhadap Prestasi Belajar sebesar 0,176 x 100 % = 17.6%(nilai Rsquare x 100%) 4. Persamaan garis regresi ganda: Y = 10,359 + 0,043 X1 + 0,690 X2 Adapun untuk kontribusi parsial, maka akan dilakukan pengujian tambahan sbb: Copy table coefiicients Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. Correlations B Std. Error Beta Zero- order Partial Part 1 (Constant) 10,359 24,836 ,417 ,678 Motivasi Belajar ,043 ,205 ,027 ,212 ,833 ,145 ,028 ,026 Minat Belajar ,690 ,211 ,411 3,274 ,002 ,419 ,398 ,394 a. Dependent Variable: Prestasi Belajar Penjelasan: 1. Kontribusi parsial X1 terhadap Y adalah nilai Beta x nilai Zero-order (nilai korelasinya) x 100%, yaitu: 0,027 x 0,145 x 100% = 0.39% 2. Kontribusi parsial X2 terhadap Y adalah nilai Beta x nilai Zero-order (nilai kolerasinya) x 100%, yaitu: 0,411 x 0,419 x 100%= 17,22%
  • 4. 3. Kontribusi ganda adalah penjumlahan dari kontribusi parsial X1 dan X2, yaitu: 0.39 + 17,22 = 17,61 % (nilai Rsquare x 100%) LAMPIRAN: OUTPUT PENGOLAHAN DATA SYNTAX UJI HIPOTESIS Error # 1. Command name: UJI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN (.05) POUT (.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2. Regression Notes Output Created 01-JUN-2020 20:50:24 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing values for any variable used.
  • 5. Syntax REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN (.05) POUT (.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2. Resources Processor Time 00:00:00,05 Elapsed Time 00:00:00,05 Memory Required 1652 bytes Additional Memory Required for Residual Plots 0 bytes Variables Entered/Removeda Model Variables Entered Variables Removed Method 1 Minat Belajar, Motivasi Belajarb . Enter a. Dependent Variable: Prestasi Belajar b. All requested variables entered. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 ,419a ,176 ,147 10,200 a. Predictors: (Constant), Minat Belajar, Motivasi Belajar ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 1266,124 2 633,062 6,084 ,004b Residual 5930,726 57 104,048 Total 7196,850 59 a. Dependent Variable: Prestasi Belajar b. Predictors: (Constant), Minat Belajar, Motivasi Belajar
  • 6. Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig.B Std. Error Beta 1 (Constant) 10,359 24,836 ,417 ,678 Motivasi Belajar ,043 ,205 ,027 ,212 ,833 Minat Belajar ,690 ,211 ,411 3,274 ,002 a. Dependent Variable: Prestasi Belajar DESKRIPSI DATA Error # 1. Command name: DESKRIPSI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops. FREQUENCIES VARIABLES=Y /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS. Frequencies Notes Output Created 01-JUN-2020 20:50:24 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data.
  • 7. Syntax FREQUENCIES VARIABLES=Y /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS. Resources Processor Time 00:00:00,70 Elapsed Time 00:00:00,59 Statistics Prestasi Belajar N Valid 60 Missing 0 Mean 85,05 Median 90,00 Mode 90 Std. Deviation 11,044 Minimum 60 Maximum 99 Prestasi Belajar Frequency Percent Valid Percent Cumulative Percent Valid 60 3 5,0 5,0 5,0 69 1 1,7 1,7 6,7 70 8 13,3 13,3 20,0 75 1 1,7 1,7 21,7 79 10 16,7 16,7 38,3 90 26 43,3 43,3 81,7 99 11 18,3 18,3 100,0 Total 60 100,0 100,0
  • 8. FREQUENCIES VARIABLES=X1 /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS. Frequencies Notes Output Created 01-JUN-2020 20:50:25 Comments
  • 9. Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data. Syntax FREQUENCIES VARIABLES=X1 /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS. Resources Processor Time 00:00:00,62 Elapsed Time 00:00:00,64 Statistics Motivasi Belajar N Valid 60 Missing 0 Mean 97,70 Median 97,00 Mode 99 Std. Deviation 6,778 Minimum 77 Maximum 111 Motivasi Belajar Frequency Percent Valid Percent Cumulative Percent Valid 77 2 3,3 3,3 3,3 90 5 8,3 8,3 11,7 91 5 8,3 8,3 20,0 94 1 1,7 1,7 21,7 95 5 8,3 8,3 30,0
  • 10. 96 10 16,7 16,7 46,7 97 4 6,7 6,7 53,3 99 11 18,3 18,3 71,7 100 1 1,7 1,7 73,3 104 8 13,3 13,3 86,7 106 3 5,0 5,0 91,7 107 2 3,3 3,3 95,0 111 3 5,0 5,0 100,0 Total 60 100,0 100,0 FREQUENCIES VARIABLES=X2 /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS.
  • 11. Frequencies Notes Output Created 01-JUN-2020 20:50:25 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data. Syntax FREQUENCIES VARIABLES=X2 /STATISTICS=STDDEV MINIMUM MAXIMUM MEAN MEDIAN MODE /HISTOGRAM NONORMAL /ORDER=ANALYSIS. Resources Processor Time 00:00:00,69 Elapsed Time 00:00:00,50 Statistics Minat Belajar N Valid 60 Missing 0 Mean 102,10 Median 97,00 Mode 97 Std. Deviation 6,579 Minimum 96 Maximum 116
  • 12. Minat Belajar Frequency Percent Valid Percent Cumulative Percent Valid 96 14 23,3 23,3 23,3 97 18 30,0 30,0 53,3 106 14 23,3 23,3 76,7 107 8 13,3 13,3 90,0 116 6 10,0 10,0 100,0 Total 60 100,0 100,0 UJI NORMALITAS DATA Error # 1. Command name: UJI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops.
  • 13. NPAR TESTS /K-S (NORMAL)= X1 X2 Y /MISSING ANALYSIS. NPar Tests Notes Output Created 01-JUN-2020 20:50:26 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each test are based on all cases with valid data for the variable(s) used in that test. Syntax NPAR TESTS /K-S (NORMAL)= X1 X2 Y /MISSING ANALYSIS. Resources Processor Time 00:00:00,02 Elapsed Time 00:00:00,01 Number of Cases Alloweda 262144 a. Based on availability of workspace memory. One-Sample Kolmogorov-Smirnov Test Motivasi Belajar Minat Belajar Prestasi Belajar N 60 60 60 Normal Parametersa,b Mean 97,70 102,10 85,05 Std. Deviation 6,778 6,579 11,044 Most Extreme Differences Absolute ,141 ,314 ,290
  • 14. Positive ,141 ,314 ,144 Negative -,129 -,190 -,290 Test Statistic ,141 ,314 ,290 Asymp. Sig. (2-tailed) ,005c ,000c ,000c a. Test distribution is Normal. b. Calculated from data. c. Lilliefors Significance Correction. UJI LINEARITAS Error # 1. Command name: UJI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops. MEANS TABLES=Y BY X1 X2 /CELLS MEAN COUNT STDDEV /STATISTICS LINEARITY. Means Notes Output Created 01-JUN-2020 20:50:26 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing For each dependent variable in a table, user-defined missing values for the dependent and all grouping variables are treated as missing.
  • 15. Cases Used Cases used for each table have no missing values in any independent variable, and not all dependent variables have missing values. Syntax MEANS TABLES=Y BY X1 X2 /CELLS MEAN COUNT STDDEV /STATISTICS LINEARITY. Resources Processor Time 00:00:00,05 Elapsed Time 00:00:00,06 Case Processing Summary Cases Included Excluded Total N Percent N Percent N Percent Prestasi Belajar * Motivasi Belajar 60 100,0% 0 0,0% 60 100,0% Prestasi Belajar * Minat Belajar 60 100,0% 0 0,0% 60 100,0% Prestasi Belajar * Motivasi Belajar Report Prestasi Belajar Motivasi Belajar Mean N Std. Deviation 77 90,00 2 ,000 90 82,60 5 11,760 91 87,80 5 10,686 94 90,00 1 . 95 83,80 5 9,066 96 78,70 10 11,086 97 84,50 4 6,351 99 82,36 11 15,240 100 79,00 1 . 104 88,38 8 9,724 106 96,00 3 5,196 107 94,50 2 6,364 111 89,33 3 10,017
  • 16. Total 85,05 60 11,044 ANOVA Table Sum of Squares df Mea Prestasi Belajar * Motivasi Belajar Between Groups (Combined) 1351,363 12 Linearity 151,063 1 Deviation from Linearity 1200,300 11 Within Groups 5845,487 47 Total 7196,850 59 Measures of Association R R Squared Eta Eta Squared Prestasi Belajar * Motivasi Belajar ,145 ,021 ,433 ,188 Prestasi Belajar * Minat Belajar Report Prestasi Belajar Minat Belajar Mean N Std. Deviation 96 80,79 14 13,979 97 81,39 18 9,793 106 87,29 14 9,051 107 89,75 8 8,956 116 94,50 6 4,930 Total 85,05 60 11,044 ANOVA Table Sum of Squares df Mea Prestasi Belajar * Minat Belajar Between Groups (Combined) 1278,358 4 Linearity 1261,435 1
  • 17. Deviation from Linearity 16,923 3 Within Groups 5918,492 55 Total 7196,850 59 Measures of Association R R Squared Eta Eta Squared Prestasi Belajar * Minat Belajar ,419 ,175 ,421 ,178 UJI MULTIKOLENIARITAS DAN HETEROSKEDASTSITAS Error # 1. Command name: UJI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops. REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP /CRITERIA=PIN (.05) POUT (.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2 /SCATTERPLOT= ( *ZRESID, *ZPRED)) /RESIDUALS HISTOGRAM (ZRESID) NORMPROB (ZRESID) /SAVE RESID. Regression Notes Output Created 01-JUN-2020 20:50:26 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none>
  • 18. N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing values for any variable used. Syntax REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP /CRITERIA=PIN (.05) POUT (.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2 /SCATTERPLOT= ( *ZRESID, *ZPRED)) /RESIDUALS HISTOGRAM (ZRESID) NORMPROB (ZRESID) /SAVE RESID. Resources Processor Time 00:00:00,00 Elapsed Time 00:00:00,01 Warnings Missing left parenthesis on REGRESSION SCATTERPLOT command--A left parenthesis '(' is expected in the SCATTERPLOT subcommand but is not found. You must specify the variables to be plotted in parentheses. For example, '/SCAT (*RESID,INCOME)' produces a scatterplot of the residual with the variable INCOME Text found: ). Execution of this command stops. *WARNING* REGRESSION syntax scan continues. Further diagnostics from this command may be misleading - interpret with care. UJI NORMALITAS GALAT Error # 1. Command name: UJI The first word in the line is not recognized as an SPSS Statistics command. Execution of this command stops. NPAR TESTS /K-S (NORMAL) =RES 1 /MISSING ANALYSIS.
  • 19. NPar Tests Notes Output Created 01-JUN-2020 20:50:26 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each test are based on all cases with valid data for the variable(s) used in that test. Syntax NPAR TESTS /K-S (NORMAL) =RES 1 /MISSING ANALYSIS. Resources Processor Time 00:00:00,00 Elapsed Time 00:00:00,01 Warnings Text: RES Command: NPAR TESTS An undefined variable name, or a scratch or system variable was specified in a variable list which accepts only standard variables. Check spelling and verify the existence of this variable. Execution of this command stops. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2.
  • 20. Regression Notes Output Created 01-JUN-2020 21:34:30 Comments Input Data D:UNINDRA PGRI JAKARTA 2019SMT 3SMT 3COMPUTER APPLICATIONtugas utsFILE EXCEL TUGAS UTS_YUNUS.sav Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data File 60 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing values for any variable used. Syntax REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2. Resources Processor Time 00:00:00,03 Elapsed Time 00:00:00,03 Memory Required 1652 bytes Additional Memory Required for Residual Plots 0 bytes Variables Entered/Removeda Model Variables Entered Variables Removed Method 1 Minat Belajar, Motivasi Belajarb . Enter
  • 21. a. Dependent Variable: Prestasi Belajar b. All requested variables entered. Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 ,419a ,176 ,147 10,200 a. Predictors: (Constant), Minat Belajar, Motivasi Belajar ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 1266,124 2 633,062 6,084 ,004b Residual 5930,726 57 104,048 Total 7196,850 59 a. Dependent Variable: Prestasi Belajar b. Predictors: (Constant), Minat Belajar, Motivasi Belajar Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. Correlations B Std. Error Beta Zero-order Partial Part 1 (Constant) 10,359 24,836 ,417 ,678 Motivasi Belajar ,043 ,205 ,027 ,212 ,833 ,145 ,028 ,026 Minat Belajar ,690 ,211 ,411 3,274 ,002 ,419 ,398 ,394 a. Dependent Variable: Prestasi Belajar