際際滷

際際滷Share a Scribd company logo
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                           Partially Separated Meta-Models
                                                                             with Evolution Strategies for
                                                                               Well Placement Problem
                                                                                                                Zyed Bouzarkouna
                                                                                                                                IFP-EN (French Institute of Petroleum)
                                                                                                                                INRIA
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                        Joint work with
                                                                                                            Didier Yu Ding (IFP-EN)
                                                                                                               Anne Auger (INRIA)
                                                                                                                        SPE EUROPEC 2011
2
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France



                                                                Well Placement Problem




                                  Onwunalu & Durlofsky (2010)
Well Placement Problem
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                    r s !!   Onwunalu & Durlofsky (2010)
                                                                                              l hou
                                                                                      se vera
                                                                                  o
                                                                             tes t
                                                                     l   minu
                                                               severa

3
Outline



                                                                  Optimization Approach: CMA-ES

                                                                  CMA-ES with meta-models
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  Exploiting the partial Separability of the objective function

                                                                  Results and Discussions




4
CMA-ES
                                                               Covariance Matrix Adaptation  Evolution Strategy
                                                               Hansen & Ostermeier (2001)

                                                                                               Initializing



                                                                             Sampling:     x i  m   N i (0, C)  i  1..
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  Next
                                                                generation                     Evaluating individuals



                                                                                         Adapting the distribution parameters


5
6
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France



                                                               CMA-ES (Cont'd)
CMA-ES with Meta-Models

                                                                 f : 'true' objective                        
                                                                                                             f : approximate
                                                                        function                              function (MM)
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                      simulated well configuration
                                                                      non-simulated well configuration : approximated with   
                                                                                                                             f
7
CMA-ES with Meta-models (Cont'd)
                                                               Building the meta-model


                                                                    f : 'true' objective                      
                                                                                                              f : approximate
                                                                           function                            function (MM)

                                                                  Locally weighted regression
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                           q : point to evaluate
                                                                                                 n

                                                                                                     ^
                                                                                                  f (q) : full quadratic meta-model on q


8
CMA-ES with Meta-models (Cont'd)
                                                               Building the meta-model


                                                                    f : 'true' objective                        
                                                                                                                f : approximate
                                                                           function                               function (MM)

                                                                  Locally weighted regression
    息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                           A training set containing m points with their
                                                                                           objective function values
                                                                                                      (x j , y j  f (x j )), j  1...m



9
CMA-ES with Meta-models (Cont'd)
                                                            Building the meta-model


                                                                 f : 'true' objective                       
                                                                                                            f : approximate
                                                                        function                             function (MM)

                                                               Locally weighted regression
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                        We select the k nearest neighbor data points to
                                                                                        q according to the Mahalanobis distance with
                                                                                        respect to the current covariance matrix C.



10
CMA-ES with Meta-models (Cont'd)
                                                            Building the meta-model


                                                                 f : 'true' objective                           
                                                                                                                f : approximate
                                                                        function                                 function (MM)

                                                               Locally weighted regression
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                        Building the full quadratic meta-model   
                                                                                                                                 f
                                                                                        on q




11
CMA-ES with Meta-models (Cont'd)
                                                            Approximate Ranking Procedure

                                                                                         ^                                ^                                                 ^
                                                                   evaluate with        f         evaluate with         f                          evaluate with         f
                                                                                 ^                                 ^                                                 ^
                                                                   rank with    f (Rank0)         rank with      f (Rank1)                         rank with      f (Ranki)
Training Set                                                                                                                                ...
n elements                                                         evaluate with f the            If (NO criteria)                                 If (NO criteria)
                                                                    best from Rank0.                     evaluate with        f the best                  evaluate with        f   the best
                                                                                                          from Rank2.                                       with Rank2.
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                       ad




                                                                                                                                                            ad
                                                                                                          ad
                                                                         dt




                                                                                                                                                              dt
                                                                                                            dt
                                                                          ot




                                                                                                                                                              ot
                                                                                                            ot
                                                                           he




                                                                                                                                                               he
                                                                                                             he
                                                                              tra




                                                                                                                                                                  tra
                                                                                                                tra
                                                                                 ini




                                                                                                                                                                     ini
                                                                                                                   ini
                                                                                    n




                                                                                                                                                                        n
                                                                                                                      n
                                                                                  gs




                                                                                                                                                                         gs
                                                                                                                       gs
                                                                                        et




                                                                                                                                                                            et
                                                                                                                          et



                                                                                  Training Set                       Training Set                                  Training Set
                                                                                (n + 1 ) elements                  (n + 2 ) elements                           (n + 1 + i ) elements


12
MM Acceptance Criteria: nlmm-CMA
                                                            Bouzarkouna et al. (2010a)
                                                               The meta-model is accepted if it succeeds in keeping:
                                                                        the best individual and the ensemble of the 亮 best individuals
                                                                         unchanged
                                                                    or
                                                                        the best individual unchanged, if more than one fourth of the
                                                                         population is evaluated.
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




13
Test Case                                                Di
                                                                                                                        me
                                                                                                                           ns
                                                                                                                              ion
                                                                                                                                  =
                                                               PUNQ S-3: 19 x 28 x 5.                                                 12


                                                               2 wells to be placed:
                                                                   1 unilateral producer               vertical, horizontal or deviated.

                                                                   1 unilateral injector               Lmax = 1000 m.
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               NPV = the objective function
                                                                                           T
                                                                                         Qo   Co 
                                                                                        Q  C  )  C
                                                                       Y
                                                                                1
                                                                NPV   (             n  g  g
                                                                      n 1 (1  APR )
                                                                                                        d

                                                                                        Qw  n Cw  n
                                                                                           



14
CMA-ES with meta-models: Performance
                                                            10 runs on the PUNQ-S3 reservoir case
                                                            Bouzarkouna et al. (ECMOR 2010)
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  The number of reservoir simulations is reduced by 19 - 25%

15
Why this work

                                                               Why ?
                                                                   The well placement problem is still demanding in reducing the
                                                                    number of reservoir simulations


                                                               Idea
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                   Building a more accurate approximate model


                                                               How ?
                                                                   Exploit the problem structure to reduce more the number of
                                                                    simulations
                                                                           Reduce the dimension of the approximate model


16
Well Placement Problem
                                                                        W3 W4
                                                                W1 W2                W5
                                                                                               Objective function: Net Present Value
                                                                                                               (NPV)
                                                                                                   NPV (field)     NPV (well )
                                                                                                                   wells
                                                                                                                           i   i




                                                                                                When evaluating the NPV, we have
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                    Reservoir Simulation        access to all the NPVi

                                                                   W1
                                                                                                Each NPVi can be approximated
                                                                                                using only a few variables instead of
                                                                                W2
                                                                                                all the variables of the problem.
                                                            Production
                                                                                          W3
                                                            curves for
                                                             each well
17
Partial Separability of the Objective Function


                                                                                                                    
                                                                                                N
                                                                                     f ( x)           f i  i ( x)
                                                                                                i 1

                                                               Two Conditions
                                                                    i must be explicit ;
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                    i must define a number of variables < dimension;
                                                               well placement problem:
                                                                   f i : The NPV for each well
                                                                      i:   defines the variables for each     fi

18
Partially Separated Meta-Models


                                                                 f : 'true' objective                     
                                                                                                          f : approximate
                                                                        function                           function (MM)



                                                                                                                                
                                                                                                              N

                                                                                         
                                                                       N
                                                            f ( x)           f i  ( x)
                                                                                   i               
                                                                                                   f ( x)             i ( x)
                                                                                                                     fi
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                       i 1                                   i 1



                                                                   Building N meta-models (1 for each element function)
                                                                   instead of 1 meta-model for the whole objective function.


19
Building the p-sep Meta-Model


                                                               Locally weighted regression



                                                                                          qn: point to evaluate on f
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                      f i ( i (q)) ???
                                                                                          i (q) ni   : point to evaluate on   
                                                                                                                                 fi
                                                                                                 ^
                                                                                                 f i : full quadratic meta-model on    i
                                                                                                                                            (q)




20
Building the p-sep Meta-Model


                                                               Locally weighted regression
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                      A training set containing mi points with their
                                                                            i (q)    true element function values

                                                                                            (x ), f ( (x ))  ,
                                                                                              i
                                                                                                  j   i
                                                                                                          i
                                                                                                              j       j  1,..., mi




21
Building the p-sep Meta-Model


                                                               Locally weighted regression
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                      We select the ki nearest neighbor data points to
                                                                            i (q)    陸i (q) according to the Mahalanobis distance
                                                                                      with respect to a matrix Ci.

                                                                                      Ci is an ni  ni matrix adapted to the local shape
                                                                                      of the landscape of fi.




22
Building the p-sep Meta-Model


                                                               Locally weighted regression


                                                                                     Building the full quadratic meta-model f i
                                                                                                                            
                                                                                     on 陸i(q)
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                            i (q)                                                                ni ( ni  3)

                                                                                                                         
                                                                                          ki
                                                                                     min  i               i  i     j 
                                                                                               f  i (x ),   f  i (x ) 2   , w.r.t.                   1
                                                                                                                                                        2
                                                                                              
                                                                                         j 1 
                                                                                                        j                     j
                                                                                                                               
                                                                                                                                           i




23
Test Case                                         Di m
                                                                                                                  ens
                                                                                                                        ion
                                                                                                                              =1
                                                                                                                                8
                                                               PUNQ S-3: 19 x 28 x 5.

                                                               1 injector already drilled
                                                                                                                         I-1
                                                               3 unilateral producers to be placed
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               NPV = the objective function
                                                                                             T
                                                                                           Qo   Co 
                                                                                          Q  C  )  C
                                                                         Y
                                                                                  1
                                                                  NPV   (             n  g  g
                                                                        n 1 (1  APR )
                                                                                                          d

                                                                                          Qw  n Cw  n
                                                                                             

24
Problem Modeling                           Di m
                                                                                                           ens
                                                                                                                 ion
                                                                                                                       =1
                                                                                                                         8
                                                               Meta-models to approximate the NPV of each well
                                                                    NPV(field) = NPV(P1) + NPV(P2) + NPV(P3) + NPV(I1)

                                                               Each sub-objective function will be approximated with
                                                                a few parameters
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                   the coordinates of the considered well
                                                                   the minimum distance to other producers
                                                                   the minimum distance to the injector

                                                            We build 4 meta-models
                                                            For wells to be drilled, each meta-model depends on 8 parameters
                                                            For wells already drilled, the meta-model depends on 2 parameters
25
26
     息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                10 runs
                                                                          Performance on PUNQ-S3
Performance on PUNQ-S3 (Cont'd)


                                                            Map of HPhiSo
                                                                             I-1
                                                             Position of                 P-1
                                                            solution wells
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                         P-2



                                                                                   P-3

27
Summary

                                                               New approach based on exploiting the partial
                                                                separability of the objective function

                                                               The approach can be combined with any other
                                                                stochastic optimizer
 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               Promising results on the PUNQ-S3: It reduces the
                                                                number of simulations by:
                                                                   60% compared to CMA-ES;
                                                                   28% compared to CMA-ES with meta-models;



28
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                                Thank you for Your Attention
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                        zyed.bouzarkouna@ifpen.fr

                                                                                                                        SPE EUROPEC 2011
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                           Partially Separated Meta-Models
                                                                             with Evolution Strategies for
                                                                               Well Placement Problem
                                                                                                               Zyed Bouzarkouna
                                                                                                           zyed.bouzarkouna@ifpen.fr
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                        Joint work with
                                                                                                                       Didier Yu Ding
                                                                                                                        Anne Auger
                                                                                                                        SPE EUROPEC 2011

More Related Content

Well Placement Optimization (with a reduced number of reservoir simualtions)

  • 1. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Partially Separated Meta-Models with Evolution Strategies for Well Placement Problem Zyed Bouzarkouna IFP-EN (French Institute of Petroleum) INRIA 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Joint work with Didier Yu Ding (IFP-EN) Anne Auger (INRIA) SPE EUROPEC 2011
  • 2. 2 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Well Placement Problem Onwunalu & Durlofsky (2010)
  • 3. Well Placement Problem 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France r s !! Onwunalu & Durlofsky (2010) l hou se vera o tes t l minu severa 3
  • 4. Outline Optimization Approach: CMA-ES CMA-ES with meta-models 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Exploiting the partial Separability of the objective function Results and Discussions 4
  • 5. CMA-ES Covariance Matrix Adaptation Evolution Strategy Hansen & Ostermeier (2001) Initializing Sampling: x i m N i (0, C) i 1.. 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Next generation Evaluating individuals Adapting the distribution parameters 5
  • 6. 6 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France CMA-ES (Cont'd)
  • 7. CMA-ES with Meta-Models f : 'true' objective f : approximate function function (MM) 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France simulated well configuration non-simulated well configuration : approximated with f 7
  • 8. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective f : approximate function function (MM) Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France q : point to evaluate n ^ f (q) : full quadratic meta-model on q 8
  • 9. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective f : approximate function function (MM) Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France A training set containing m points with their objective function values (x j , y j f (x j )), j 1...m 9
  • 10. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective f : approximate function function (MM) Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France We select the k nearest neighbor data points to q according to the Mahalanobis distance with respect to the current covariance matrix C. 10
  • 11. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective f : approximate function function (MM) Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Building the full quadratic meta-model f on q 11
  • 12. CMA-ES with Meta-models (Cont'd) Approximate Ranking Procedure ^ ^ ^ evaluate with f evaluate with f evaluate with f ^ ^ ^ rank with f (Rank0) rank with f (Rank1) rank with f (Ranki) Training Set ... n elements evaluate with f the If (NO criteria) If (NO criteria) best from Rank0. evaluate with f the best evaluate with f the best from Rank2. with Rank2. 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France ad ad ad dt dt dt ot ot ot he he he tra tra tra ini ini ini n n n gs gs gs et et et Training Set Training Set Training Set (n + 1 ) elements (n + 2 ) elements (n + 1 + i ) elements 12
  • 13. MM Acceptance Criteria: nlmm-CMA Bouzarkouna et al. (2010a) The meta-model is accepted if it succeeds in keeping: the best individual and the ensemble of the 亮 best individuals unchanged or the best individual unchanged, if more than one fourth of the population is evaluated. 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France 13
  • 14. Test Case Di me ns ion = PUNQ S-3: 19 x 28 x 5. 12 2 wells to be placed: 1 unilateral producer vertical, horizontal or deviated. 1 unilateral injector Lmax = 1000 m. 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France NPV = the objective function T Qo Co Q C ) C Y 1 NPV ( n g g n 1 (1 APR ) d Qw n Cw n 14
  • 15. CMA-ES with meta-models: Performance 10 runs on the PUNQ-S3 reservoir case Bouzarkouna et al. (ECMOR 2010) 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France The number of reservoir simulations is reduced by 19 - 25% 15
  • 16. Why this work Why ? The well placement problem is still demanding in reducing the number of reservoir simulations Idea 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Building a more accurate approximate model How ? Exploit the problem structure to reduce more the number of simulations Reduce the dimension of the approximate model 16
  • 17. Well Placement Problem W3 W4 W1 W2 W5 Objective function: Net Present Value (NPV) NPV (field) NPV (well ) wells i i When evaluating the NPV, we have 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Reservoir Simulation access to all the NPVi W1 Each NPVi can be approximated using only a few variables instead of W2 all the variables of the problem. Production W3 curves for each well 17
  • 18. Partial Separability of the Objective Function N f ( x) f i i ( x) i 1 Two Conditions i must be explicit ; 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France i must define a number of variables < dimension; well placement problem: f i : The NPV for each well i: defines the variables for each fi 18
  • 19. Partially Separated Meta-Models f : 'true' objective f : approximate function function (MM) N N f ( x) f i ( x) i f ( x) i ( x) fi 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France i 1 i 1 Building N meta-models (1 for each element function) instead of 1 meta-model for the whole objective function. 19
  • 20. Building the p-sep Meta-Model Locally weighted regression qn: point to evaluate on f 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France f i ( i (q)) ??? i (q) ni : point to evaluate on fi ^ f i : full quadratic meta-model on i (q) 20
  • 21. Building the p-sep Meta-Model Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France A training set containing mi points with their i (q) true element function values (x ), f ( (x )) , i j i i j j 1,..., mi 21
  • 22. Building the p-sep Meta-Model Locally weighted regression 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France We select the ki nearest neighbor data points to i (q) 陸i (q) according to the Mahalanobis distance with respect to a matrix Ci. Ci is an ni ni matrix adapted to the local shape of the landscape of fi. 22
  • 23. Building the p-sep Meta-Model Locally weighted regression Building the full quadratic meta-model f i on 陸i(q) 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France i (q) ni ( ni 3) ki min i i i j f i (x ), f i (x ) 2 , w.r.t. 1 2 j 1 j j i 23
  • 24. Test Case Di m ens ion =1 8 PUNQ S-3: 19 x 28 x 5. 1 injector already drilled I-1 3 unilateral producers to be placed 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France NPV = the objective function T Qo Co Q C ) C Y 1 NPV ( n g g n 1 (1 APR ) d Qw n Cw n 24
  • 25. Problem Modeling Di m ens ion =1 8 Meta-models to approximate the NPV of each well NPV(field) = NPV(P1) + NPV(P2) + NPV(P3) + NPV(I1) Each sub-objective function will be approximated with a few parameters 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France the coordinates of the considered well the minimum distance to other producers the minimum distance to the injector We build 4 meta-models For wells to be drilled, each meta-model depends on 8 parameters For wells already drilled, the meta-model depends on 2 parameters 25
  • 26. 26 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France 10 runs Performance on PUNQ-S3
  • 27. Performance on PUNQ-S3 (Cont'd) Map of HPhiSo I-1 Position of P-1 solution wells 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France P-2 P-3 27
  • 28. Summary New approach based on exploiting the partial separability of the objective function The approach can be combined with any other stochastic optimizer 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Promising results on the PUNQ-S3: It reduces the number of simulations by: 60% compared to CMA-ES; 28% compared to CMA-ES with meta-models; 28
  • 29. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Thank you for Your Attention 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France zyed.bouzarkouna@ifpen.fr SPE EUROPEC 2011
  • 30. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Partially Separated Meta-Models with Evolution Strategies for Well Placement Problem Zyed Bouzarkouna zyed.bouzarkouna@ifpen.fr 息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Joint work with Didier Yu Ding Anne Auger SPE EUROPEC 2011