The document discusses using partially separated meta-models with evolution strategies to optimize well placement problems. It proposes building separate meta-models to approximate the objective function value for each well, rather than one meta-model for the whole problem. This exploits the partial separability of the objective function. The approach reduces the number of required reservoir simulations compared to other methods, improving optimization efficiency for well placement problems.
1 of 30
Downloaded 62 times
More Related Content
Well Placement Optimization (with a reduced number of reservoir simualtions)
1. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources
Partially Separated Meta-Models
with Evolution Strategies for
Well Placement Problem
Zyed Bouzarkouna
IFP-EN (French Institute of Petroleum)
INRIA
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Joint work with
Didier Yu Ding (IFP-EN)
Anne Auger (INRIA)
SPE EUROPEC 2011
2. 2
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Well Placement Problem
Onwunalu & Durlofsky (2010)
3. Well Placement Problem
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
r s !! Onwunalu & Durlofsky (2010)
l hou
se vera
o
tes t
l minu
severa
3
4. Outline
Optimization Approach: CMA-ES
CMA-ES with meta-models
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Exploiting the partial Separability of the objective function
Results and Discussions
4
5. CMA-ES
Covariance Matrix Adaptation Evolution Strategy
Hansen & Ostermeier (2001)
Initializing
Sampling: x i m N i (0, C) i 1..
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Next
generation Evaluating individuals
Adapting the distribution parameters
5
7. CMA-ES with Meta-Models
f : 'true' objective
f : approximate
function function (MM)
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
simulated well configuration
non-simulated well configuration : approximated with
f
7
8. CMA-ES with Meta-models (Cont'd)
Building the meta-model
f : 'true' objective
f : approximate
function function (MM)
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
q : point to evaluate
n
^
f (q) : full quadratic meta-model on q
8
9. CMA-ES with Meta-models (Cont'd)
Building the meta-model
f : 'true' objective
f : approximate
function function (MM)
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
A training set containing m points with their
objective function values
(x j , y j f (x j )), j 1...m
9
10. CMA-ES with Meta-models (Cont'd)
Building the meta-model
f : 'true' objective
f : approximate
function function (MM)
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
We select the k nearest neighbor data points to
q according to the Mahalanobis distance with
respect to the current covariance matrix C.
10
11. CMA-ES with Meta-models (Cont'd)
Building the meta-model
f : 'true' objective
f : approximate
function function (MM)
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Building the full quadratic meta-model
f
on q
11
12. CMA-ES with Meta-models (Cont'd)
Approximate Ranking Procedure
^ ^ ^
evaluate with f evaluate with f evaluate with f
^ ^ ^
rank with f (Rank0) rank with f (Rank1) rank with f (Ranki)
Training Set ...
n elements evaluate with f the If (NO criteria) If (NO criteria)
best from Rank0. evaluate with f the best evaluate with f the best
from Rank2. with Rank2.
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
ad
ad
ad
dt
dt
dt
ot
ot
ot
he
he
he
tra
tra
tra
ini
ini
ini
n
n
n
gs
gs
gs
et
et
et
Training Set Training Set Training Set
(n + 1 ) elements (n + 2 ) elements (n + 1 + i ) elements
12
13. MM Acceptance Criteria: nlmm-CMA
Bouzarkouna et al. (2010a)
The meta-model is accepted if it succeeds in keeping:
the best individual and the ensemble of the 亮 best individuals
unchanged
or
the best individual unchanged, if more than one fourth of the
population is evaluated.
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
13
14. Test Case Di
me
ns
ion
=
PUNQ S-3: 19 x 28 x 5. 12
2 wells to be placed:
1 unilateral producer vertical, horizontal or deviated.
1 unilateral injector Lmax = 1000 m.
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
NPV = the objective function
T
Qo Co
Q C ) C
Y
1
NPV ( n g g
n 1 (1 APR )
d
Qw n Cw n
14
15. CMA-ES with meta-models: Performance
10 runs on the PUNQ-S3 reservoir case
Bouzarkouna et al. (ECMOR 2010)
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
The number of reservoir simulations is reduced by 19 - 25%
15
16. Why this work
Why ?
The well placement problem is still demanding in reducing the
number of reservoir simulations
Idea
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Building a more accurate approximate model
How ?
Exploit the problem structure to reduce more the number of
simulations
Reduce the dimension of the approximate model
16
17. Well Placement Problem
W3 W4
W1 W2 W5
Objective function: Net Present Value
(NPV)
NPV (field) NPV (well )
wells
i i
When evaluating the NPV, we have
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Reservoir Simulation access to all the NPVi
W1
Each NPVi can be approximated
using only a few variables instead of
W2
all the variables of the problem.
Production
W3
curves for
each well
17
18. Partial Separability of the Objective Function
N
f ( x) f i i ( x)
i 1
Two Conditions
i must be explicit ;
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
i must define a number of variables < dimension;
well placement problem:
f i : The NPV for each well
i: defines the variables for each fi
18
19. Partially Separated Meta-Models
f : 'true' objective
f : approximate
function function (MM)
N
N
f ( x) f i ( x)
i
f ( x) i ( x)
fi
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
i 1 i 1
Building N meta-models (1 for each element function)
instead of 1 meta-model for the whole objective function.
19
20. Building the p-sep Meta-Model
Locally weighted regression
qn: point to evaluate on f
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
f i ( i (q)) ???
i (q) ni : point to evaluate on
fi
^
f i : full quadratic meta-model on i
(q)
20
21. Building the p-sep Meta-Model
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
A training set containing mi points with their
i (q) true element function values
(x ), f ( (x )) ,
i
j i
i
j j 1,..., mi
21
22. Building the p-sep Meta-Model
Locally weighted regression
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
We select the ki nearest neighbor data points to
i (q) 陸i (q) according to the Mahalanobis distance
with respect to a matrix Ci.
Ci is an ni ni matrix adapted to the local shape
of the landscape of fi.
22
23. Building the p-sep Meta-Model
Locally weighted regression
Building the full quadratic meta-model f i
on 陸i(q)
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
i (q) ni ( ni 3)
ki
min i i i j
f i (x ), f i (x ) 2 , w.r.t. 1
2
j 1
j j
i
23
24. Test Case Di m
ens
ion
=1
8
PUNQ S-3: 19 x 28 x 5.
1 injector already drilled
I-1
3 unilateral producers to be placed
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
NPV = the objective function
T
Qo Co
Q C ) C
Y
1
NPV ( n g g
n 1 (1 APR )
d
Qw n Cw n
24
25. Problem Modeling Di m
ens
ion
=1
8
Meta-models to approximate the NPV of each well
NPV(field) = NPV(P1) + NPV(P2) + NPV(P3) + NPV(I1)
Each sub-objective function will be approximated with
a few parameters
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
the coordinates of the considered well
the minimum distance to other producers
the minimum distance to the injector
We build 4 meta-models
For wells to be drilled, each meta-model depends on 8 parameters
For wells already drilled, the meta-model depends on 2 parameters
25
26. 26
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
10 runs
Performance on PUNQ-S3
27. Performance on PUNQ-S3 (Cont'd)
Map of HPhiSo
I-1
Position of P-1
solution wells
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
P-2
P-3
27
28. Summary
New approach based on exploiting the partial
separability of the objective function
The approach can be combined with any other
stochastic optimizer
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Promising results on the PUNQ-S3: It reduces the
number of simulations by:
60% compared to CMA-ES;
28% compared to CMA-ES with meta-models;
28
29. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources
Thank you for Your Attention
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
zyed.bouzarkouna@ifpen.fr
SPE EUROPEC 2011
30. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources
Partially Separated Meta-Models
with Evolution Strategies for
Well Placement Problem
Zyed Bouzarkouna
zyed.bouzarkouna@ifpen.fr
息 2010 - IFP Energies nouvelles, Rueil-Malmaison, France
Joint work with
Didier Yu Ding
Anne Auger
SPE EUROPEC 2011