This document summarizes a presentation on offline reinforcement learning. It discusses how offline RL can learn from fixed datasets without further interaction with the environment, which allows for fully off-policy learning. However, offline RL faces challenges from distribution shift between the behavior policy that generated the data and the learned target policy. The document reviews several offline policy evaluation, policy gradient, and deep deterministic policy gradient methods, and also discusses using uncertainty and constraints to address distribution shift in offline deep reinforcement learning.
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
Semi supervised, weakly-supervised, unsupervised, and active learningYusuke Uchida
?
An overview of semi supervised learning, weakly-supervised learning, unsupervised learning, and active learning.
Focused on recent deep learning-based image recognition approaches.
This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
Semi supervised, weakly-supervised, unsupervised, and active learningYusuke Uchida
?
An overview of semi supervised learning, weakly-supervised learning, unsupervised learning, and active learning.
Focused on recent deep learning-based image recognition approaches.