狠狠撸

狠狠撸Share a Scribd company logo
Monte Carlo
Simulation for
Floorball results
Simulation 30E00400
Course project
Ville Lehtonen (K93890), Miikka Kataja (239680)
Introduction
What are we doing?
Salibandyliiga in a nutshell
?? 14 teams
?? A twofold regular season - 182 games
?? Top 8 teams continue in playoffs
?? Weakest team will be relegated from the league
?? Teams placing 12. and 13. face elimination rounds
This project simulates results of the regular season,
based on game results during 1990-2015
Research question
”What are the final standings and which
team will win Salibandyliiga regular
season 2015-2016?”
Assumptions
?? Amount of goals scored in a single match follow truncated
Poisson distribution – based on data (1990-2015)
?? Statistically siginficant difference in scored home goals vs.
scored away goals – F-test, t-test
?(?; ?)=?Pr?( ?= ?)?= ?? ?↑??? ?↑? ??/?!?, where x = {1,2,3, …, 25}
0%
5%
10%
15%
20%
1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Figure 1: Realized goal distribution vs. Poisson
distribution
truncated Poisson distribution Realized goal distribution
5.33
4.90
3
3.5
4
4.5
5
5.5
6
Home team Away team
Figure 2: Avg. number of goals for home and
away team
Building the model
How did we do it?
Step 1: Averages for goal
distributions
?λ↓( ? ??. ?)?=? ??
Goal averages for each
matchpair are derived from
historical data
Step 2: How is a single match
simulated?
Un ~ U(0,1)
Um ~ U(0,1)
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
pdf: goal distributions for team n vs. team m
Team n Team m
Step 2: How is a single match
simulated?
Un ~ U(0,1)
Um ~ U(0,1)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cdf: goal distributions for team n vs. team m
Team n Team m
Step 2: How is a single match
simulated?
Un = 0,65
Um = 0,79
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cdf: goal distributions for team n vs. team m
Team n Team m
Step 2: How is a single match
simulated?
Un = 0,65
Um = 0,79
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cdf: goal distributions for team n vs. team m
Team n Team m
Step 2: How is a single match
simulated?
Un = 0,65
Um = 0,79
Match result
5 - 9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
cdf: goal distributions for team n vs. team m
Team n Team m
Step 3: Match outcome probabilities
?? Simulation of each match pair x 1000 times to gain probabilities
for different match outcomes
Team n wins 68% of the time
Match ends as a draw 10% of the time
Team m wins 22% of the time
Step 4: Simulation of one season
?? The outcome of each match is determined with a LOOKUP
function and a uniformly distributed random number U ~ U(0,1)
?? Cumulative match outcome probabilities
Team n wins 0,68
Draw 0,78
Team m wins 1,0
Step 4: Simulation of one season
?? The outcome of each game is determined with a LOOKUP
function and a uniformly distributed random number U ~ U(0,1)
?? Cumulative match outcome probabilities
Team n wins 0,68
Draw 0,78
Team m wins 1,0
U = 0,82
Step 4: Simulation of one season
?? The outcome of each game is determined with a LOOKUP
function and a uniformly distributed random number U ~ U(0,1)
?? Cumulative match outcome probabilities
Team n wins 0,68
Draw 0,78
Team m wins 1,0
?? 182 matches
?? Win = +2p, draw = +1p
U = 0,82 Team m wins!
Step 5: Outcomes of the model
?? After 1000 simulation runs of a single season
Points per
team per
season
Average, max and
min points per
team after 1000
simulation runs
Variance, standard deviation
and standard error of mean
of points per team after 1000
simulation runs
Findings
What did we find out?
Iteration 1
?? Data: Past 3 seasons
?? Assumptions: Home advantage does not exist
?? Problems: Older data has too much weight on results
14%
49%
26%
9%
2%
Probability of placing top 1 in regular
season - iteration 1
Classic Happee SPV SSV Oilers
0
5
10
15
20
25
30
35
40
45
Team performance: Avg. points per team -
iteration 1
Iteration 2
?? Data: Past 1? seasons
?? Assumptions: Home advantage does exist
?? Problems: Poisson distribution with too low sample size
61%
10%
2%
3%
26%
Probability of placing top 1 in regular
season - iteration 2
Happee SPV Oilers SSV Classic
0
5
10
15
20
25
30
35
40
45
Team performance: Avg. points -
Iteration 1 & 2
Iteration 2 Iteration 1
Iteration 3
?? Data: 3? seasons with weights (0,6 / 0,25 / 0,15)
?? Assumptions: Home advantage does exist
?? Problems: Are weights accurate?
54%
15%3%
7%
21%
Probability of placing top 1 in regular season -
Iteration 3
Happee SPV Oilers SSV Classic
Comparison: Team performance
41
37
39
36
32
25 25
22 22 22
18 18
15
12
40
38
35
33
32
24
25
20
23
19
23
18 18
14
40
38
37
35
33
26
24
22
21
20
19
17
16 16
0
5
10
15
20
25
30
35
40
45
Happee Classic SPV SSV Oilers Er? KooVee TPS Indians NST OLS Nokian KrP M-team SalBa
Comparsion of iterations: Team perforamnce - avg. of points
Iteration 1 Iteration 2 Iteration 3 Lineaarinen (Iteration 1) Lineaarinen (Iteration 3)
Comparison: Variance
0
5
10
15
20
25
Happee SPV Oilers SSV Classic Er? KooVee OLS Indians M-team Nokian
KrP
TPS NST SalBa
Comparison of iterations: Variances
Iteration 1 Iteration 2 Iteration 3
Conclusion
What did we learn?
Predicted final standings
54%
15%
3%
7%
21%
Probability of placing top 1 in
regular season
Happee SPV Oilers SSV Classic
Limitations
?? There is no perfect data set available
?? teams and their relative strenghts change between seasons
?? Salibandyliiga is probably not the most optimal sports
league to use the model for
?? Only 182 games per season (vs. NHL 1230 games per season)
?? Different teams each season
à Timeliness of data vs. sample size
Comparison to current standings
Current Prediction
Questions?

More Related Content

Viewers also liked (8)

My lovely and beautiful daughter
My lovely and beautiful daughterMy lovely and beautiful daughter
My lovely and beautiful daughter
susanaralar
?
asuhan kebidanan dengan letak sungsang
asuhan kebidanan dengan letak sungsang asuhan kebidanan dengan letak sungsang
asuhan kebidanan dengan letak sungsang
student
?
queuing theory/ waiting line theory
queuing theory/ waiting line theoryqueuing theory/ waiting line theory
queuing theory/ waiting line theory
Arushi Verma
?
Waiting line
Waiting lineWaiting line
Waiting line
E P John
?
Detalyadong-aralin sa EPP4
Detalyadong-aralin sa EPP4Detalyadong-aralin sa EPP4
Detalyadong-aralin sa EPP4
Helen de la Cruz
?
power point LTA
power point LTApower point LTA
power point LTA
student
?
Waiting Line Management
Waiting Line Management Waiting Line Management
Waiting Line Management
Joshua Miranda
?
QUEUING THEORY
QUEUING THEORYQUEUING THEORY
QUEUING THEORY
avtarsingh
?
My lovely and beautiful daughter
My lovely and beautiful daughterMy lovely and beautiful daughter
My lovely and beautiful daughter
susanaralar
?
asuhan kebidanan dengan letak sungsang
asuhan kebidanan dengan letak sungsang asuhan kebidanan dengan letak sungsang
asuhan kebidanan dengan letak sungsang
student
?
queuing theory/ waiting line theory
queuing theory/ waiting line theoryqueuing theory/ waiting line theory
queuing theory/ waiting line theory
Arushi Verma
?
power point LTA
power point LTApower point LTA
power point LTA
student
?

Similar to Monte carlo simulation for floorball results (20)

Bracketology talk at the Crossroads of ideas
Bracketology talk at the Crossroads of ideasBracketology talk at the Crossroads of ideas
Bracketology talk at the Crossroads of ideas
Laura Albert
?
Math unit18 measure of variation
Math unit18 measure of variationMath unit18 measure of variation
Math unit18 measure of variation
eLearningJa
?
GERAD talk, Basket Ball & Incentives
GERAD talk, Basket Ball & IncentivesGERAD talk, Basket Ball & Incentives
GERAD talk, Basket Ball & Incentives
Arthur Charpentier
?
QSIR knowledge exchange - Matt Tite presentation
QSIR knowledge exchange   -  Matt Tite presentationQSIR knowledge exchange   -  Matt Tite presentation
QSIR knowledge exchange - Matt Tite presentation
NHS Improving Quality
?
Effects of Rule Changes and Three-point System in NHL
Effects of Rule Changes and Three-point System in NHLEffects of Rule Changes and Three-point System in NHL
Effects of Rule Changes and Three-point System in NHL
Patrice Marek
?
Volleyball analytics: Modeling volleyball using Markov chains
Volleyball analytics: Modeling volleyball using Markov chainsVolleyball analytics: Modeling volleyball using Markov chains
Volleyball analytics: Modeling volleyball using Markov chains
Laura Albert
?
Descriptive Statistics Part II: Graphical Description
Descriptive Statistics Part II: Graphical DescriptionDescriptive Statistics Part II: Graphical Description
Descriptive Statistics Part II: Graphical Description
getyourcheaton
?
S3 pn
S3 pnS3 pn
S3 pn
International advisers
?
physical education class 12 chapter 1
physical education class 12 chapter 1physical education class 12 chapter 1
physical education class 12 chapter 1
mayankpatel0402
?
Heal Point Presentation
Heal Point PresentationHeal Point Presentation
Heal Point Presentation
Bishop Guertin High School
?
Forecasting Attendance at SWU Football Games
Forecasting Attendance at SWU Football GamesForecasting Attendance at SWU Football Games
Forecasting Attendance at SWU Football Games
Muhammad Tayyab Ismat-u-llah
?
Can we predict football matches ?
Can we predict football matches ?Can we predict football matches ?
Can we predict football matches ?
Gabriele Pinto
?
Math533 finalexamreviewapr13
Math533 finalexamreviewapr13Math533 finalexamreviewapr13
Math533 finalexamreviewapr13
Brent Heard
?
Fundamental Operations.pptx
Fundamental Operations.pptxFundamental Operations.pptx
Fundamental Operations.pptx
LAILABALINADO2
?
Psychometric success numerical ability computation practice test 1 - copy
Psychometric success numerical ability   computation practice test 1 - copyPsychometric success numerical ability   computation practice test 1 - copy
Psychometric success numerical ability computation practice test 1 - copy
Roselito Baclay
?
Psychometric success numerical ability computation practice test 1
Psychometric success numerical ability   computation practice test 1Psychometric success numerical ability   computation practice test 1
Psychometric success numerical ability computation practice test 1
Roselito Baclay
?
Lesson 6 coefficient of determination
Lesson 6   coefficient of determinationLesson 6   coefficient of determination
Lesson 6 coefficient of determination
MehediHasan1023
?
Business statistics solved numericals
Business statistics solved numericalsBusiness statistics solved numericals
Business statistics solved numericals
Anurag Srivastava
?
Statistics for math (English Version)
Statistics for math (English Version)Statistics for math (English Version)
Statistics for math (English Version)
Tito_14
?
Averages and range
Averages and rangeAverages and range
Averages and range
mwardyrem
?
Bracketology talk at the Crossroads of ideas
Bracketology talk at the Crossroads of ideasBracketology talk at the Crossroads of ideas
Bracketology talk at the Crossroads of ideas
Laura Albert
?
Math unit18 measure of variation
Math unit18 measure of variationMath unit18 measure of variation
Math unit18 measure of variation
eLearningJa
?
GERAD talk, Basket Ball & Incentives
GERAD talk, Basket Ball & IncentivesGERAD talk, Basket Ball & Incentives
GERAD talk, Basket Ball & Incentives
Arthur Charpentier
?
QSIR knowledge exchange - Matt Tite presentation
QSIR knowledge exchange   -  Matt Tite presentationQSIR knowledge exchange   -  Matt Tite presentation
QSIR knowledge exchange - Matt Tite presentation
NHS Improving Quality
?
Effects of Rule Changes and Three-point System in NHL
Effects of Rule Changes and Three-point System in NHLEffects of Rule Changes and Three-point System in NHL
Effects of Rule Changes and Three-point System in NHL
Patrice Marek
?
Volleyball analytics: Modeling volleyball using Markov chains
Volleyball analytics: Modeling volleyball using Markov chainsVolleyball analytics: Modeling volleyball using Markov chains
Volleyball analytics: Modeling volleyball using Markov chains
Laura Albert
?
Descriptive Statistics Part II: Graphical Description
Descriptive Statistics Part II: Graphical DescriptionDescriptive Statistics Part II: Graphical Description
Descriptive Statistics Part II: Graphical Description
getyourcheaton
?
physical education class 12 chapter 1
physical education class 12 chapter 1physical education class 12 chapter 1
physical education class 12 chapter 1
mayankpatel0402
?
Can we predict football matches ?
Can we predict football matches ?Can we predict football matches ?
Can we predict football matches ?
Gabriele Pinto
?
Math533 finalexamreviewapr13
Math533 finalexamreviewapr13Math533 finalexamreviewapr13
Math533 finalexamreviewapr13
Brent Heard
?
Fundamental Operations.pptx
Fundamental Operations.pptxFundamental Operations.pptx
Fundamental Operations.pptx
LAILABALINADO2
?
Psychometric success numerical ability computation practice test 1 - copy
Psychometric success numerical ability   computation practice test 1 - copyPsychometric success numerical ability   computation practice test 1 - copy
Psychometric success numerical ability computation practice test 1 - copy
Roselito Baclay
?
Psychometric success numerical ability computation practice test 1
Psychometric success numerical ability   computation practice test 1Psychometric success numerical ability   computation practice test 1
Psychometric success numerical ability computation practice test 1
Roselito Baclay
?
Lesson 6 coefficient of determination
Lesson 6   coefficient of determinationLesson 6   coefficient of determination
Lesson 6 coefficient of determination
MehediHasan1023
?
Business statistics solved numericals
Business statistics solved numericalsBusiness statistics solved numericals
Business statistics solved numericals
Anurag Srivastava
?
Statistics for math (English Version)
Statistics for math (English Version)Statistics for math (English Version)
Statistics for math (English Version)
Tito_14
?
Averages and range
Averages and rangeAverages and range
Averages and range
mwardyrem
?

Recently uploaded (20)

iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
?
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
?
Hire Android App Developers in India with Cerebraix
Hire Android App Developers in India with CerebraixHire Android App Developers in India with Cerebraix
Hire Android App Developers in India with Cerebraix
cerebraixs
?
the data analytics process:Real life applications
the data analytics process:Real life applicationsthe data analytics process:Real life applications
the data analytics process:Real life applications
jhanvisaxena30
?
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
?
Presentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptxPresentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptx
siliaselim87
?
Hot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - SmartenHot Lead Prediction Analytics Use Case - Smarten
Hot Lead Prediction Analytics Use Case - Smarten
Smarten Augmented Analytics
?
How to Write Doc Comments for the Javadoc Tool.docx
How to Write Doc Comments for the Javadoc Tool.docxHow to Write Doc Comments for the Javadoc Tool.docx
How to Write Doc Comments for the Javadoc Tool.docx
vikramsingh770427
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
taqyed
?
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
?
MLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptxMLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptx
FaizaKhan720183
?
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
?
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
?
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
AlexandreMacedo50
?
MusicAggregators and comparissons distributions.pdf
MusicAggregators and comparissons distributions.pdfMusicAggregators and comparissons distributions.pdf
MusicAggregators and comparissons distributions.pdf
irramos8843
?
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
?
Optimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with CalciteOptimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with Calcite
Stamatis Zampetakis
?
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
?
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
?
iam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptxiam free indeed.pptxiam free indeed.pptx
iam free indeed.pptxiam free indeed.pptx
muhweziart
?
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
Deep-QPP: A Pairwise Interaction-based Deep Learning Model for Supervised Que...
suchanadatta3
?
Hire Android App Developers in India with Cerebraix
Hire Android App Developers in India with CerebraixHire Android App Developers in India with Cerebraix
Hire Android App Developers in India with Cerebraix
cerebraixs
?
the data analytics process:Real life applications
the data analytics process:Real life applicationsthe data analytics process:Real life applications
the data analytics process:Real life applications
jhanvisaxena30
?
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
原版复刻加拿大多伦多大学成绩单(UTSG毕业证书) 文凭
taqyed
?
Presentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptxPresentation.2 .reversal. reversal. pptx
Presentation.2 .reversal. reversal. pptx
siliaselim87
?
How to Write Doc Comments for the Javadoc Tool.docx
How to Write Doc Comments for the Javadoc Tool.docxHow to Write Doc Comments for the Javadoc Tool.docx
How to Write Doc Comments for the Javadoc Tool.docx
vikramsingh770427
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
办理魁北克大学成绩单触购买加拿大鲍蚕础惭成绩单文凭定制
taqyed
?
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
?
MLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptxMLecture 1 Introduction to AI . The basics.pptx
MLecture 1 Introduction to AI . The basics.pptx
FaizaKhan720183
?
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
?
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
?
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
2024-07-eb-big-book-of-data-engineering-3rd-edition.pdf
AlexandreMacedo50
?
MusicAggregators and comparissons distributions.pdf
MusicAggregators and comparissons distributions.pdfMusicAggregators and comparissons distributions.pdf
MusicAggregators and comparissons distributions.pdf
irramos8843
?
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
?
Optimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with CalciteOptimizing Common Table Expressions in Apache Hive with Calcite
Optimizing Common Table Expressions in Apache Hive with Calcite
Stamatis Zampetakis
?
"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT"MIAO Ecosystem Financial Management PPT
"MIAO Ecosystem Financial Management PPT
miao22
?
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
?

Monte carlo simulation for floorball results

  • 1. Monte Carlo Simulation for Floorball results Simulation 30E00400 Course project Ville Lehtonen (K93890), Miikka Kataja (239680)
  • 3. Salibandyliiga in a nutshell ?? 14 teams ?? A twofold regular season - 182 games ?? Top 8 teams continue in playoffs ?? Weakest team will be relegated from the league ?? Teams placing 12. and 13. face elimination rounds This project simulates results of the regular season, based on game results during 1990-2015
  • 4. Research question ”What are the final standings and which team will win Salibandyliiga regular season 2015-2016?”
  • 5. Assumptions ?? Amount of goals scored in a single match follow truncated Poisson distribution – based on data (1990-2015) ?? Statistically siginficant difference in scored home goals vs. scored away goals – F-test, t-test ?(?; ?)=?Pr?( ?= ?)?= ?? ?↑??? ?↑? ??/?!?, where x = {1,2,3, …, 25} 0% 5% 10% 15% 20% 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526 Figure 1: Realized goal distribution vs. Poisson distribution truncated Poisson distribution Realized goal distribution 5.33 4.90 3 3.5 4 4.5 5 5.5 6 Home team Away team Figure 2: Avg. number of goals for home and away team
  • 6. Building the model How did we do it?
  • 7. Step 1: Averages for goal distributions ?λ↓( ? ??. ?)?=? ?? Goal averages for each matchpair are derived from historical data
  • 8. Step 2: How is a single match simulated? Un ~ U(0,1) Um ~ U(0,1) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 pdf: goal distributions for team n vs. team m Team n Team m
  • 9. Step 2: How is a single match simulated? Un ~ U(0,1) Um ~ U(0,1) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 cdf: goal distributions for team n vs. team m Team n Team m
  • 10. Step 2: How is a single match simulated? Un = 0,65 Um = 0,79 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 cdf: goal distributions for team n vs. team m Team n Team m
  • 11. Step 2: How is a single match simulated? Un = 0,65 Um = 0,79 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 cdf: goal distributions for team n vs. team m Team n Team m
  • 12. Step 2: How is a single match simulated? Un = 0,65 Um = 0,79 Match result 5 - 9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 cdf: goal distributions for team n vs. team m Team n Team m
  • 13. Step 3: Match outcome probabilities ?? Simulation of each match pair x 1000 times to gain probabilities for different match outcomes Team n wins 68% of the time Match ends as a draw 10% of the time Team m wins 22% of the time
  • 14. Step 4: Simulation of one season ?? The outcome of each match is determined with a LOOKUP function and a uniformly distributed random number U ~ U(0,1) ?? Cumulative match outcome probabilities Team n wins 0,68 Draw 0,78 Team m wins 1,0
  • 15. Step 4: Simulation of one season ?? The outcome of each game is determined with a LOOKUP function and a uniformly distributed random number U ~ U(0,1) ?? Cumulative match outcome probabilities Team n wins 0,68 Draw 0,78 Team m wins 1,0 U = 0,82
  • 16. Step 4: Simulation of one season ?? The outcome of each game is determined with a LOOKUP function and a uniformly distributed random number U ~ U(0,1) ?? Cumulative match outcome probabilities Team n wins 0,68 Draw 0,78 Team m wins 1,0 ?? 182 matches ?? Win = +2p, draw = +1p U = 0,82 Team m wins!
  • 17. Step 5: Outcomes of the model ?? After 1000 simulation runs of a single season Points per team per season Average, max and min points per team after 1000 simulation runs Variance, standard deviation and standard error of mean of points per team after 1000 simulation runs
  • 18. Findings What did we find out?
  • 19. Iteration 1 ?? Data: Past 3 seasons ?? Assumptions: Home advantage does not exist ?? Problems: Older data has too much weight on results 14% 49% 26% 9% 2% Probability of placing top 1 in regular season - iteration 1 Classic Happee SPV SSV Oilers 0 5 10 15 20 25 30 35 40 45 Team performance: Avg. points per team - iteration 1
  • 20. Iteration 2 ?? Data: Past 1? seasons ?? Assumptions: Home advantage does exist ?? Problems: Poisson distribution with too low sample size 61% 10% 2% 3% 26% Probability of placing top 1 in regular season - iteration 2 Happee SPV Oilers SSV Classic 0 5 10 15 20 25 30 35 40 45 Team performance: Avg. points - Iteration 1 & 2 Iteration 2 Iteration 1
  • 21. Iteration 3 ?? Data: 3? seasons with weights (0,6 / 0,25 / 0,15) ?? Assumptions: Home advantage does exist ?? Problems: Are weights accurate? 54% 15%3% 7% 21% Probability of placing top 1 in regular season - Iteration 3 Happee SPV Oilers SSV Classic
  • 22. Comparison: Team performance 41 37 39 36 32 25 25 22 22 22 18 18 15 12 40 38 35 33 32 24 25 20 23 19 23 18 18 14 40 38 37 35 33 26 24 22 21 20 19 17 16 16 0 5 10 15 20 25 30 35 40 45 Happee Classic SPV SSV Oilers Er? KooVee TPS Indians NST OLS Nokian KrP M-team SalBa Comparsion of iterations: Team perforamnce - avg. of points Iteration 1 Iteration 2 Iteration 3 Lineaarinen (Iteration 1) Lineaarinen (Iteration 3)
  • 23. Comparison: Variance 0 5 10 15 20 25 Happee SPV Oilers SSV Classic Er? KooVee OLS Indians M-team Nokian KrP TPS NST SalBa Comparison of iterations: Variances Iteration 1 Iteration 2 Iteration 3
  • 25. Predicted final standings 54% 15% 3% 7% 21% Probability of placing top 1 in regular season Happee SPV Oilers SSV Classic
  • 26. Limitations ?? There is no perfect data set available ?? teams and their relative strenghts change between seasons ?? Salibandyliiga is probably not the most optimal sports league to use the model for ?? Only 182 games per season (vs. NHL 1230 games per season) ?? Different teams each season à Timeliness of data vs. sample size
  • 27. Comparison to current standings Current Prediction