- The document introduces Deep Counterfactual Regret Minimization (Deep CFR), a new algorithm proposed by Noam Brown et al. in ICML 2019 that incorporates deep neural networks into Counterfactual Regret Minimization (CFR) for solving large imperfect-information games.
- CFR is an algorithm for computing Nash equilibria in two-player zero-sum games by minimizing cumulative counterfactual regret. It scales poorly to very large games that require abstraction of the game tree.
- Deep CFR removes the need for abstraction by using a neural network to generalize the strategy across the game tree, allowing it to solve previously intractable games like no-limit poker.
cvpaper.challengeにおいてECCVのOral論文をまとめた「ECCV 2020 報告」です。
ECCV2020 Oral論文 完全読破(2/2) [/cvpaperchallenge/eccv2020-22-238640597/1]
pp. 7-10 ECCVトレンド
pp. 12-81 3D geometry & reconstruction
pp. 82-137 Geometry, mapping and tracking
pp. 138-206 Image and Video synthesis
pp. 207-252 Learning methods
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ作成?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2020の目標は「トップ会議に30+本投稿」することです。
- The document introduces Deep Counterfactual Regret Minimization (Deep CFR), a new algorithm proposed by Noam Brown et al. in ICML 2019 that incorporates deep neural networks into Counterfactual Regret Minimization (CFR) for solving large imperfect-information games.
- CFR is an algorithm for computing Nash equilibria in two-player zero-sum games by minimizing cumulative counterfactual regret. It scales poorly to very large games that require abstraction of the game tree.
- Deep CFR removes the need for abstraction by using a neural network to generalize the strategy across the game tree, allowing it to solve previously intractable games like no-limit poker.
cvpaper.challengeにおいてECCVのOral論文をまとめた「ECCV 2020 報告」です。
ECCV2020 Oral論文 完全読破(2/2) [/cvpaperchallenge/eccv2020-22-238640597/1]
pp. 7-10 ECCVトレンド
pp. 12-81 3D geometry & reconstruction
pp. 82-137 Geometry, mapping and tracking
pp. 138-206 Image and Video synthesis
pp. 207-252 Learning methods
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ作成?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2020の目標は「トップ会議に30+本投稿」することです。
This document provides an introduction to fixed income term structures and financial instruments. It begins with a quick mathematical introduction that covers risk neutral measures, Girsanov's theorem, and pricing formulas. The main body of the document then focuses on the stochastic approach to modeling term structures. It discusses various interest rates, stochastic discount factors, and financial instruments like FRAs, interest rate swaps, caps and floors. It also covers the expectation hypothesis and Heath-Jarrow-Morton framework for modeling term structures.