狠狠撸

狠狠撸Share a Scribd company logo
2009年11月13日
Hadoop カンフ?レンス クロージングスピーチ




       データセンター視点で
        考えてみるHadoop

       日経BP社 日経コンピュータ
            中田 敦
日経コンピュータも
Hadoopを追いかけます!




         2009年
       11月24日号に
       ご期待ください
ところで…

      Yahoo! が
 Hadoopを運用している
   データセンターが
   どのようなものか
    ご存じですか?
米Yahoo!本社の
コンテナ型データセンター


               海上輸送などに使用
               する国際規格の幅8
               フ?ート(2メートル
               44センチ)、長さ40
               フ?ート(12メート
               ル20センチ)のコン
               テナ
米Yahoo!本社の
コンテナ型データセンター




コンテナの壁に沿って、
サーバーがギッシリと
詰め込まれています
米Yahoo!本社の
コンテナ型データセンター


               ラックとラックの間にある
               銀色の箱は「ラジエター」。
               中に水が循環する細いパ?
               プが張り巡らされています。
               中にある大きなフ?ンで風
               を起こして、サーバーが発
               する熱を流し込み、ラジエ
               ターの中を流れる水によっ
               て熱を冷やす仕組み
米Yahoo!本社の
コンテナ型データセンター




サーバーの電源はラックの上
部に集約されています。
サーバーのマザーボードには
電源は実装されていません。
そのため電源が発する熱が
サーバー内にこもらない仕組
み
米Yahoo!本社の
コンテナ型データセンター


               コンテナには水を供給?
               排出するホースが合計2
               本接続されています。
               導入された水によって
               サーバーの熱を冷やし、
               温まった水がコンテナ外
               に排出される仕組み
コンテナ型データセンターの规模




    米SGI「ICEcube」の仕様(コンテナ1台当たり)
   サーバー台数        最大2400台
   プロセッサ数        最大4800個
   プロセッサコ?数      最大2万2400個
   ストレージ容量       最大11ペタバ?ト
   水の温度          セ氏18度
Googleは2005年11月から
コンテナ型データセンターを運用
Microsoftの場合
シカゴの最新鋭データセンター
コンテナ
     200台
     112台
サーバー台数
    約50万台
  22万4000台
    (コンテナのみ)
               「Data Center Knowledge」より引
なぜ贬补诲辞辞辫、なぜコンテナ?


   「情報爆発」という
  新しい現実に向き合うには

      それに見合った
     新しいツールが必要
Googleの中の人曰く

  ケン?トンプソン氏

  ? some sort of – not Cloud
   Computing but a Cloud Computer;
   something that is always there and
   always be accessed and always
   store data and always give it back.
Googleが自作した
「クラウドコンピュータ」
                                  ?プリケーションサービス
                                                     Google
                          Web検索     ログ解析    Gmail
                                                      Maps

                                                              論文:
                         プログラミング言語                            Bigtable: A
論文:                         Sawzall                           Distributed Storage
Interpreting the Data:                                        System for Structured
Parallel Analysis with                                        Data(2006年)
Sawzall(2005年)           並列プログラミングモデル      キー?バリュー型データスト?
                           MapReduce            BigTable      論文:
論文:                                                           The Google File
MapReduce:                                                    System(2003年)
Simplified Data          分散フ??ルシステム
Processing on Large         Google File System(GFS)           論文:
Clusters(2004年)
                                                              The Chubby lock
                         分散ロックシステム                            service for loosely-
ホワ?トペーパー:                                                     coupled distributed
The Datacenter as a                    Chubby                 systems(2006年)
Computer. An
Introduction to the
Design of Warehouse-              独自に建造したデータセンター              論文:
Scale Machines(2009                                           Failure Trends in a
年)                                                            Large Disk Drive
                                  グーグルプラットフォーム                Population(2007年)
Hadoopとは何か?

  Googleが作った
  「クラウドコンピュータ」を

        民主化
              する存在
お伝えしたいこと


   Hadoopを使って

 「何か新しいこと」を

    やりましょう
お伝えしたいこと


   ユーザー事例に
     ついては
  日経コンピュータに
     ご連絡を
ありがとうございました




  Twitter: @Nakada_itpro

More Related Content

What's hot (20)

Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
Ryoma Nagata
?
データサイエンティストが力を発挥できるアジャイルデータ活用基盘
データサイエンティストが力を発挥できるアジャイルデータ活用基盘データサイエンティストが力を発挥できるアジャイルデータ活用基盘
データサイエンティストが力を発挥できるアジャイルデータ活用基盘
Recruit Lifestyle Co., Ltd.
?
Hadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食いHadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食い
Ryuji Tamagawa
?
これからのデータセンターが目指す技术(公开用)
これからのデータセンターが目指す技术(公开用) これからのデータセンターが目指す技术(公开用)
これからのデータセンターが目指す技术(公开用)
Tadashi Sugita
?
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
Hideo Takagi
?
翱厂厂とクラウドによるコンピューティングモデルの変化
翱厂厂とクラウドによるコンピューティングモデルの変化翱厂厂とクラウドによるコンピューティングモデルの変化
翱厂厂とクラウドによるコンピューティングモデルの変化
Nobuyori Takahashi
?
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようPreview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Daisuke Masubuchi
?
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
Ryoma Nagata
?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
maruyama097
?
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
Hideo Takagi
?
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解するトレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
Takahiro Inoue
?
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
株式会社クライム
?
【轮読会】実践的データ基盘への処方笺
【轮読会】実践的データ基盘への処方笺【轮読会】実践的データ基盘への処方笺
【轮読会】実践的データ基盘への処方笺
Momota Sasaki
?
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しようMicrosoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Hideo Takagi
?
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
de:code 2017
?
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
dstn
?
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
Hideo Takagi
?
Delta lakesummary
Delta lakesummaryDelta lakesummary
Delta lakesummary
Ryoma Nagata
?
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
Naoki (Neo) SATO
?
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
INTAGEGROUP
?
Azure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/SparkAzure Purview Linage for Dataflow/Spark
Azure Purview Linage for Dataflow/Spark
Ryoma Nagata
?
データサイエンティストが力を発挥できるアジャイルデータ活用基盘
データサイエンティストが力を発挥できるアジャイルデータ活用基盘データサイエンティストが力を発挥できるアジャイルデータ活用基盘
データサイエンティストが力を発挥できるアジャイルデータ活用基盘
Recruit Lifestyle Co., Ltd.
?
Hadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食いHadoop / Elastic MapReduceつまみ食い
Hadoop / Elastic MapReduceつまみ食い
Ryuji Tamagawa
?
これからのデータセンターが目指す技术(公开用)
これからのデータセンターが目指す技术(公开用) これからのデータセンターが目指す技术(公开用)
これからのデータセンターが目指す技术(公开用)
Tadashi Sugita
?
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
【ウェブ セミナー】AI 時代のクラウド データ ウェアハウス Azure SQL Data Warehouse [実践編]
Hideo Takagi
?
翱厂厂とクラウドによるコンピューティングモデルの変化
翱厂厂とクラウドによるコンピューティングモデルの変化翱厂厂とクラウドによるコンピューティングモデルの変化
翱厂厂とクラウドによるコンピューティングモデルの変化
Nobuyori Takahashi
?
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようPreview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Daisuke Masubuchi
?
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
データ基盤の従来~最新の考え方とSynapse Analyticsでの実現
Ryoma Nagata
?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
大規模分散システムの現在 -- GFS, MapReduce, BigTableはどう変化したか?
maruyama097
?
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
Hideo Takagi
?
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解するトレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
トレシ?ャーテ?ータのハ?ッチクエリとアト?ホッククエリを理解する
Takahiro Inoue
?
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
PaaS DBへの移行/連携ソリューション紹介! AWS, Azure, Google, IBM全てできます!
株式会社クライム
?
【轮読会】実践的データ基盘への処方笺
【轮読会】実践的データ基盘への処方笺【轮読会】実践的データ基盘への処方笺
【轮読会】実践的データ基盘への処方笺
Momota Sasaki
?
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しようMicrosoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Microsoft Azureのビッグデータ基盤とAIテクノロジーを活用しよう
Hideo Takagi
?
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
[DI03] DWH スペシャリストが語る! Azure SQL Data Warehouse チューニングの勘所
de:code 2017
?
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
2014年4月17日 dstnHub発表スライド「dataspiderインターナル:アーキテクチャ編」
dstn
?
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [実践編]
Hideo Takagi
?
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
[Azure Deep Dive] Spark と Azure HDInsight によるビッグ データ分析入門 (2017/03/27)
Naoki (Neo) SATO
?
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
(インテージテクノスフィア)贵驰20冲技术探究委员会冲高速分散技术分科会活动报告
INTAGEGROUP
?

Similar to データセンター视点で考えてみる贬补诲辞辞辫 (20)

【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
Developers Summit
?
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
Insight Technology, Inc.
?
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
DNA Data Bank of Japan center
?
マイニング探検会#10
マイニング探検会#10マイニング探検会#10
マイニング探検会#10
Yoji Kiyota
?
はやわかり贬补诲辞辞辫
はやわかり贬补诲辞辞辫はやわかり贬补诲辞辞辫
はやわかり贬补诲辞辞辫
Shinpei Ohtani
?
Panel Discussion@WebDB forum 2014
Panel Discussion@WebDB forum 2014Panel Discussion@WebDB forum 2014
Panel Discussion@WebDB forum 2014
Makoto Yui
?
Azure Datalake 大全
Azure Datalake 大全Azure Datalake 大全
Azure Datalake 大全
Daiyu Hatakeyama
?
自律型データベース Oracle Autonomous Database 最新情報
自律型データベース Oracle Autonomous Database 最新情報自律型データベース Oracle Autonomous Database 最新情報
自律型データベース Oracle Autonomous Database 最新情報
オラクルエンジニア通信
?
础滨?贬笔颁?ビッグデータで利用される分散ファイルシステムを知る
础滨?贬笔颁?ビッグデータで利用される分散ファイルシステムを知る础滨?贬笔颁?ビッグデータで利用される分散ファイルシステムを知る
础滨?贬笔颁?ビッグデータで利用される分散ファイルシステムを知る
日本ヒューレット?パッカード株式会社
?
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
griddb
?
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Cloudera Japan
?
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version - ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
Tetsutaro Watanabe
?
ビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラムビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラム
Recruit Technologies
?
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
Insight Technology, Inc.
?
笔贬笔开発者のための狈辞厂蚕尝入门
笔贬笔开発者のための狈辞厂蚕尝入门笔贬笔开発者のための狈辞厂蚕尝入门
笔贬笔开発者のための狈辞厂蚕尝入门
じゅん なかざ
?
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリックQlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
QlikPresalesJapan
?
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform
Naoki (Neo) SATO
?
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
de:code 2017
?
Cloudera大阪セミナー 20130219
Cloudera大阪セミナー 20130219Cloudera大阪セミナー 20130219
Cloudera大阪セミナー 20130219
Cloudera Japan
?
【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
【17-E-3】Hadoop:黄色い象使いへの道 ~「Hadoop徹底入門」より~
Developers Summit
?
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
[INSIGHT OUT 2011] b21 ひとつのデータベース技術では生き残れない part2 no sql, hadoop
Insight Technology, Inc.
?
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
[DDBJing31] 軽量仮想環境を用いてNGSデータの解析再現性を担保する
DNA Data Bank of Japan center
?
マイニング探検会#10
マイニング探検会#10マイニング探検会#10
マイニング探検会#10
Yoji Kiyota
?
はやわかり贬补诲辞辞辫
はやわかり贬补诲辞辞辫はやわかり贬补诲辞辞辫
はやわかり贬补诲辞辞辫
Shinpei Ohtani
?
Panel Discussion@WebDB forum 2014
Panel Discussion@WebDB forum 2014Panel Discussion@WebDB forum 2014
Panel Discussion@WebDB forum 2014
Makoto Yui
?
自律型データベース Oracle Autonomous Database 最新情報
自律型データベース Oracle Autonomous Database 最新情報自律型データベース Oracle Autonomous Database 最新情報
自律型データベース Oracle Autonomous Database 最新情報
オラクルエンジニア通信
?
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
もうSQLとNoSQLを選ぶ必要はない!? ~両者を備えたスケールアウトデータベースGridDB~
griddb
?
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Impala + Kudu を用いたデータウェアハウス構築の勘所 (仮)
Cloudera Japan
?
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version - ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
ビッグデータ処理データベースの全体像と使い分け - 2017年 Version -
Tetsutaro Watanabe
?
ビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラムビッグデータ活用支援フォーラム
ビッグデータ活用支援フォーラム
Recruit Technologies
?
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
[db tech showcase Tokyo 2018] #dbts2018 #E28 『Hadoop DataLakeにリアルタイムでデータをレプリケ...
Insight Technology, Inc.
?
笔贬笔开発者のための狈辞厂蚕尝入门
笔贬笔开発者のための狈辞厂蚕尝入门笔贬笔开発者のための狈辞厂蚕尝入门
笔贬笔开発者のための狈辞厂蚕尝入门
じゅん なかざ
?
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリックQlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
Qlik Talend Cloud概要:リアルタイムデータ統合とデータ品質を実現するデータファブリック
QlikPresalesJapan
?
[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform[de:code 2019 振り返り Night!] Data Platform
[de:code 2019 振り返り Night!] Data Platform
Naoki (Neo) SATO
?
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
[DI07] あらゆるデータに価値がある! アンチ断捨離ストのための Azure Data Lake
de:code 2017
?
Cloudera大阪セミナー 20130219
Cloudera大阪セミナー 20130219Cloudera大阪セミナー 20130219
Cloudera大阪セミナー 20130219
Cloudera Japan
?

Recently uploaded (11)

贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
Matsushita Laboratory
?
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
sugiuralab
?
LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3
LFDT Tokyo Meetup
?
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
Industrial Technology Research Institute (ITRI)(工業技術研究院, 工研院)
?
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
?
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
CRI Japan, Inc.
?
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
NTT DATA Technology & Innovation
?
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
harmonylab
?
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
Matsushita Laboratory
?
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
sugiuralab
?
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
Matsushita Laboratory
?
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
贬补谤耻办颈厂丑颈苍办补飞补冲尝尝惭を利用した果树农家の経験知の対话的蓄积支援冲诲别颈尘2025
Matsushita Laboratory
?
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
空间オーディオを用いたヘッドパスワードの提案と音源提示手法の最适化
sugiuralab
?
LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3LF Decentralized Trust Tokyo Meetup 3
LF Decentralized Trust Tokyo Meetup 3
LFDT Tokyo Meetup
?
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
ラズパイを使って作品を作ったらラズパイコンテストで碍厂驰赏を貰って、さらに、文化庁メディア芸术祭で审査员推荐作品に选ばれてしまった件?自作チップでラズパイ...
Industrial Technology Research Institute (ITRI)(工業技術研究院, 工研院)
?
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
【卒业论文】深层学习によるログ异常検知モデルを用いたサイバー攻撃検知に関する研究
harmonylab
?
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
2025フードテックWeek大阪展示会 - LoRaWANを使った複数ポイント温度管理 by AVNET玉井部長
CRI Japan, Inc.
?
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
実はアナタの身近にある!? Linux のチェックポイント/レストア機能 (NTT Tech Conference 2025 発表資料)
NTT DATA Technology & Innovation
?
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
【卒业论文】尝尝惭を用いた惭耻濒迟颈-础驳别苍迟-顿别产补迟别における反论の効果に関する研究
harmonylab
?
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
第1回日本理学疗法推论学会学术大会での発表资料(2025年3月2日 高桥可奈恵)
Matsushita Laboratory
?
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
测距センサと滨惭鲍センサを用いた指轮型デバイスにおける颜认証システムの提案
sugiuralab
?
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
狈辞诲补滨迟蝉耻办颈冲反省観点の分类に基づく试合の振り返り支援システムに関する有用性検証冲顿贰滨惭2025
Matsushita Laboratory
?

データセンター视点で考えてみる贬补诲辞辞辫