Selection of housing, one of the necessities of human life, has a great influence on life for a long time. However, since it requires a wide range of information gathering and consideration before decision, state-of-the-art recommendation algorithms such as collaborative filtering do not work well. In this presentation, after reviewing issues specific to the real estate field, I cited examples of "application of crowdsourcing to social media (Twitter timelines)" and "application of deep learning to property images" as an effort by our research group. Finally I discuss what kind of AI technology is applicable in the real estate field.
Mining User Experience through Crowdsourcing: A Property Search Behavior Corp...Yoji Kiyota
?
This document describes a study that aimed to establish a method for understanding user experiences in property searching through analyzing Twitter timelines. The researchers collected Twitter timelines of followers of a Japanese property search service account and used crowdsourcing microtasks to extract tweets related to property searching and analyze them based on a conventional property search process framework. Workers were asked to categorize timeline fragments as either related or unrelated to property searching. This allowed the researchers to build a corpus of property search behavior data derived from social media for analyzing user needs and experiences.
13. 各手法の利点?欠点
Collabor Content Demogr Utility- Knowle
ative -based aphic based dge-
filtering based
利 A: ジャンルにまたがるレコメンド x x
点
B: ドメイン知識が不要 x x x
C: 時間の経過につれて品質が向上 x x x
D: 潜在的フィードバックが有効にはたらく x x
E: 準備期間が不要 x x
F: 嗜好の変化に追随できる x x
G: 商品以外の属性を利用できる x x
H: ユーザーニーズから製品へのマッピング x
欠 I: 新規ユーザへの即時対応ができない x x x
点
J:新規アイテムへの即時対応ができない x
K: 小さなユーザ集合への適切なレコメンデーションが難しい x x
L: 品質が履歴データ量に依存 x x x
M: 安定性と柔軟性のトレードオフ x x x
N: デモグラフィック属性の収集が必要 x
O: ユーザーのユーティリティ情報入力が必要 x
P: 履歴データからの学習が不可 x x
Q: 知識データの調整作業が必要 x 13