ݺߣ

ݺߣShare a Scribd company logo
Guidelines for Interoperability in Tourism Data Transformation Wolfram Höpken [email_address]   NoFrills Travel & Technology Expo, Bergamo 25.09.2009
Data transformation – structured data mapping Structured data mapping Schema mapping : Establishing mappings between local data sources (or database schemas) Datasource-to-ontology mapping : Establishing mappings between a datasource and an ontology Mapping languages Should be fully declarative in order to efficiently define and describe mappings discover inconsistencies and ambiguities in mappings Examples: XSLT,  D2R map, R2O
Data transformation – structured data mapping Types of clashes between data sources Different  naming : Equivalent concepts have different names in different datasources (fully mappable) Different  position : Equivalent concepts have different positions within the structure of the datasource (fully mappable) Different  scope  of concepts: Concepts, containing the same piece of information in different datasources, have different scopes, i.e., the same piece of information might be represented as single concept or as part of several concepts (fully mappable) Different  abstraction levels : The same information is represented on different levels of abstraction (partially mappable) Different  granularity : The same information is represented on different levels of granularity (partially mappable) Missing concept : A concept in one datasource has no counterpart in the other datasource (not mappable)
Data transformation – structured data mapping Short-term recommendations (1–3 years) Use  (graphical) mediation tools  that automatically map two different data structures Introduce  reasoning capabilities  within resource mediation tools to automatically suggest  inconsistencies Long-term recommendations (3–10 years) Use semantic web technologies (e.g. based on RDF) to  name and represent (data) resources on the Web  so that mapping can be automatically undertaken Foster  high level general ontologies  to describe particular domains of interest so that low-level more concrete ontologies can later be linked or merged within the (general) structure
Data transformation – semantic annotation Semantic annotation Adding meaning to unstructured, semi-structured or structured content (html documents, word documents, video or audio content, etc.) Based on ontologies as referenced semantic Tagging User-generated semantic annotation Often based on taxonomies Folksonomies Community-generated taxonomies Especially used for annotation of user-generated content
Data transformation – semantic annotation Short-term recommendations (1–3 years) Build  graphic manual annotation   tools  that enable  transparent semantic annotation  and automatic generation of correspondent source code Long-term recommendations (3–10 years) Support  natural language processing  annotation techniques
Data transformation – automatic information extraction Information extraction Structuring unstructured data in a way that it can be automatically analysed, queried and integrated with structured data sources Automatic identification of selected types of entities, relations, or events in free text Named entity recognition Explication of references to organisations, institutions, facilities, places, etc. Machine learning techniques  like maximum entropy or hidden markov Current approaches reach up to  90% precision Event extraction Normally  template-based  extraction of information, built on top of named entity recognition approaches
Data transformation – automatic information extraction Short-term recommendations (1–3 years) Foster the use of semantic web technologies to  describe non-structured data  on the web by the means of resources to make data machine processable Long-term recommendations (3–10 years) Agree on the  labels  (preferably with intervention of a recognized body such as the W3C) particular tourism content ought to have, so that it is made  visible for search engines Develop SW that enables  (semi)automatic information annotation  according to the previous recommendation

More Related Content

What's hot (9)

Data Rodeo: A Data Analytics Environment for the Central Texas Region
Data Rodeo: A Data Analytics Environment for the Central Texas RegionData Rodeo: A Data Analytics Environment for the Central Texas Region
Data Rodeo: A Data Analytics Environment for the Central Texas Region
Center for Transportation Research - UT Austin
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.orgEC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
Jindřich Mynarz
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
Penn State University
Web data mining
Web data miningWeb data mining
Web data mining
Institute of Technology Telkom
HathiTrust Reserach Center Nov2013
HathiTrust Reserach Center Nov2013HathiTrust Reserach Center Nov2013
HathiTrust Reserach Center Nov2013
Beth Plale
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1 Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
ÚISK FF UK
Semantic Search Over The Web
Semantic Search Over The WebSemantic Search Over The Web
Semantic Search Over The Web
alierkan
Multivariate visibility graphs for fMRI data
Multivariate visibility graphs for fMRI dataMultivariate visibility graphs for fMRI data
Multivariate visibility graphs for fMRI data
danielemarinazzo
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASESQUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
Nexgen Technology
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.orgEC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
EC-WEB: Validator and Preview for the JobPosting Data Model of Schema.org
Jindřich Mynarz
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
WF ED 540, CLASS MEETING 4, Structure of ggplot2 coding, 2016
Penn State University
HathiTrust Reserach Center Nov2013
HathiTrust Reserach Center Nov2013HathiTrust Reserach Center Nov2013
HathiTrust Reserach Center Nov2013
Beth Plale
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1 Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
Jan Dvořák: CERIF - evropský formát pro informace o výzkumu, část 1
ÚISK FF UK
Semantic Search Over The Web
Semantic Search Over The WebSemantic Search Over The Web
Semantic Search Over The Web
alierkan
Multivariate visibility graphs for fMRI data
Multivariate visibility graphs for fMRI dataMultivariate visibility graphs for fMRI data
Multivariate visibility graphs for fMRI data
danielemarinazzo
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASESQUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
QUALITY-AWARE SUBGRAPH MATCHING OVER INCONSISTENT PROBABILISTIC GRAPH DATABASES
Nexgen Technology

Viewers also liked (8)

Data transformation and query management in personal health sensor network
Data transformation and query management in personal health sensor networkData transformation and query management in personal health sensor network
Data transformation and query management in personal health sensor network
TAIWAN
Further8 data transformation
Further8  data transformationFurther8  data transformation
Further8 data transformation
kmcmullen
Holistics Overview
Holistics OverviewHolistics Overview
Holistics Overview
Vincent Woon
PhD Defense of Wim Le Page
PhD Defense of Wim Le PagePhD Defense of Wim Le Page
PhD Defense of Wim Le Page
ADReM UA
Data transformation
Data transformationData transformation
Data transformation
Chris Orwa
Methods8 trigonometric functions
Methods8  trigonometric functionsMethods8  trigonometric functions
Methods8 trigonometric functions
kmcmullen
FindWatt Data Transformation Services - Floor Mats
FindWatt Data Transformation Services - Floor MatsFindWatt Data Transformation Services - Floor Mats
FindWatt Data Transformation Services - Floor Mats
Dan Barbata
Incremental Data Transformations on Wide-Column Stores with NotaQL
Incremental Data Transformations on Wide-Column Stores with NotaQLIncremental Data Transformations on Wide-Column Stores with NotaQL
Incremental Data Transformations on Wide-Column Stores with NotaQL
Johannes Schildgen
Data transformation and query management in personal health sensor network
Data transformation and query management in personal health sensor networkData transformation and query management in personal health sensor network
Data transformation and query management in personal health sensor network
TAIWAN
Further8 data transformation
Further8  data transformationFurther8  data transformation
Further8 data transformation
kmcmullen
PhD Defense of Wim Le Page
PhD Defense of Wim Le PagePhD Defense of Wim Le Page
PhD Defense of Wim Le Page
ADReM UA
Methods8 trigonometric functions
Methods8  trigonometric functionsMethods8  trigonometric functions
Methods8 trigonometric functions
kmcmullen
FindWatt Data Transformation Services - Floor Mats
FindWatt Data Transformation Services - Floor MatsFindWatt Data Transformation Services - Floor Mats
FindWatt Data Transformation Services - Floor Mats
Dan Barbata
Incremental Data Transformations on Wide-Column Stores with NotaQL
Incremental Data Transformations on Wide-Column Stores with NotaQLIncremental Data Transformations on Wide-Column Stores with NotaQL
Incremental Data Transformations on Wide-Column Stores with NotaQL
Johannes Schildgen

Similar to 090925 Data Transformation (20)

Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Artificial Intelligence Institute at UofSC
Open Conceptual Data Models
Open Conceptual Data ModelsOpen Conceptual Data Models
Open Conceptual Data Models
rumito
Sem tech2013 tutorial
Sem tech2013 tutorialSem tech2013 tutorial
Sem tech2013 tutorial
Thengo Kim
Recent Trends in Semantic Search Technologies
Recent Trends in Semantic Search TechnologiesRecent Trends in Semantic Search Technologies
Recent Trends in Semantic Search Technologies
Thanh Tran
Semantic Annotation: The Mainstay of Semantic Web
Semantic Annotation: The Mainstay of Semantic WebSemantic Annotation: The Mainstay of Semantic Web
Semantic Annotation: The Mainstay of Semantic Web
Editor IJCATR
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Research
adameq
Slawek Korea
Slawek KoreaSlawek Korea
Slawek Korea
Slawek
(More) Transparency Transformation
(More) Transparency Transformation(More) Transparency Transformation
(More) Transparency Transformation
George Thomas
Social Semantic Search and Browsing
Social Semantic Search and BrowsingSocial Semantic Search and Browsing
Social Semantic Search and Browsing
Sebastian Ryszard Kruk
Text data mining1
Text data mining1Text data mining1
Text data mining1
KU Leuven
The Social Data Web
The Social Data WebThe Social Data Web
The Social Data Web
George Thomas
Gt ea2009
Gt ea2009Gt ea2009
Gt ea2009
George Thomas
An Annotation Framework For The Semantic Web
An Annotation Framework For The Semantic WebAn Annotation Framework For The Semantic Web
An Annotation Framework For The Semantic Web
Andrea Porter
Toward The Semantic Deep Web
Toward The Semantic Deep WebToward The Semantic Deep Web
Toward The Semantic Deep Web
Samiul Hoque
It's all semantics! -The premises and promises of the semantic web
It's all semantics! -The premises and promises of the semantic webIt's all semantics! -The premises and promises of the semantic web
It's all semantics! -The premises and promises of the semantic web
Scottish Library & Information Council (SLIC), CILIP in Scotland (CILIPS)
Semantic Interoperability and Information Brokering in Global Information Sys...
Semantic Interoperability and Information Brokering in Global Information Sys...Semantic Interoperability and Information Brokering in Global Information Sys...
Semantic Interoperability and Information Brokering in Global Information Sys...
Amit Sheth
Semantically indexed hypermedia linking information disciplines
Semantically indexed hypermedia linking information disciplinesSemantically indexed hypermedia linking information disciplines
Semantically indexed hypermedia linking information disciplines
unyil96
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Amit Sheth
Facilitating Dialogue - Using Semantic Web Technology for eParticipation
Facilitating Dialogue - Using Semantic Web Technology for eParticipationFacilitating Dialogue - Using Semantic Web Technology for eParticipation
Facilitating Dialogue - Using Semantic Web Technology for eParticipation
IMC Technologies
Semantics in Financial Services -David Newman
Semantics in Financial Services -David NewmanSemantics in Financial Services -David Newman
Semantics in Financial Services -David Newman
Peter Berger
Open Conceptual Data Models
Open Conceptual Data ModelsOpen Conceptual Data Models
Open Conceptual Data Models
rumito
Sem tech2013 tutorial
Sem tech2013 tutorialSem tech2013 tutorial
Sem tech2013 tutorial
Thengo Kim
Recent Trends in Semantic Search Technologies
Recent Trends in Semantic Search TechnologiesRecent Trends in Semantic Search Technologies
Recent Trends in Semantic Search Technologies
Thanh Tran
Semantic Annotation: The Mainstay of Semantic Web
Semantic Annotation: The Mainstay of Semantic WebSemantic Annotation: The Mainstay of Semantic Web
Semantic Annotation: The Mainstay of Semantic Web
Editor IJCATR
Corrib.org - OpenSource and Research
Corrib.org - OpenSource and ResearchCorrib.org - OpenSource and Research
Corrib.org - OpenSource and Research
adameq
Slawek Korea
Slawek KoreaSlawek Korea
Slawek Korea
Slawek
(More) Transparency Transformation
(More) Transparency Transformation(More) Transparency Transformation
(More) Transparency Transformation
George Thomas
An Annotation Framework For The Semantic Web
An Annotation Framework For The Semantic WebAn Annotation Framework For The Semantic Web
An Annotation Framework For The Semantic Web
Andrea Porter
Toward The Semantic Deep Web
Toward The Semantic Deep WebToward The Semantic Deep Web
Toward The Semantic Deep Web
Samiul Hoque
Semantic Interoperability and Information Brokering in Global Information Sys...
Semantic Interoperability and Information Brokering in Global Information Sys...Semantic Interoperability and Information Brokering in Global Information Sys...
Semantic Interoperability and Information Brokering in Global Information Sys...
Amit Sheth
Semantically indexed hypermedia linking information disciplines
Semantically indexed hypermedia linking information disciplinesSemantically indexed hypermedia linking information disciplines
Semantically indexed hypermedia linking information disciplines
unyil96
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Semantic Interoperability in Infocosm: Beyond Infrastructural and Data Intero...
Amit Sheth
Facilitating Dialogue - Using Semantic Web Technology for eParticipation
Facilitating Dialogue - Using Semantic Web Technology for eParticipationFacilitating Dialogue - Using Semantic Web Technology for eParticipation
Facilitating Dialogue - Using Semantic Web Technology for eParticipation
IMC Technologies
Semantics in Financial Services -David Newman
Semantics in Financial Services -David NewmanSemantics in Financial Services -David Newman
Semantics in Financial Services -David Newman
Peter Berger

More from eXchange For Travel (XFT) (20)

La documentation XFT pour le tourismeLa documentation XFT pour le tourisme
La documentation XFT pour le tourisme
eXchange For Travel (XFT)
Etourisme photos produits_catalogueEtourisme photos produits_catalogue
Etourisme photos produits_catalogue
eXchange For Travel (XFT)
XFT - Assemblée générale ordinaire 2012 XFT - Assemblée générale ordinaire 2012
XFT - Assemblée générale ordinaire 2012
eXchange For Travel (XFT)
Comité fonctionnel et technique présentation publique catalogue xft session3 ...Comité fonctionnel et technique présentation publique catalogue xft session3 ...
Comité fonctionnel et technique présentation publique catalogue xft session3 ...
eXchange For Travel (XFT)
Comprendre le langage xft avec la gestion d'un dossierComprendre le langage xft avec la gestion d'un dossier
Comprendre le langage xft avec la gestion d'un dossier
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec la gestion d'un dossierComprendre le langage xft avec la gestion d'un dossier
Comprendre le langage xft avec la gestion d'un dossier
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comité fonctionnel et technique présentation publique catalogue xft session2 ...Comité fonctionnel et technique présentation publique catalogue xft session2 ...
Comité fonctionnel et technique présentation publique catalogue xft session2 ...
eXchange For Travel (XFT)
Présentation publique comité executif xf tdu 20 septembre 2011Présentation publique comité executif xf tdu 20 septembre 2011
Présentation publique comité executif xf tdu 20 septembre 2011
eXchange For Travel (XFT)
Comité fonctionnel et technique présententation publique xft démat des factur...Comité fonctionnel et technique présententation publique xft démat des factur...
Comité fonctionnel et technique présententation publique xft démat des factur...
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
La documentation XFT pour le tourismeLa documentation XFT pour le tourisme
La documentation XFT pour le tourisme
eXchange For Travel (XFT)
Etourisme photos produits_catalogueEtourisme photos produits_catalogue
Etourisme photos produits_catalogue
eXchange For Travel (XFT)
XFT - Assemblée générale ordinaire 2012 XFT - Assemblée générale ordinaire 2012
XFT - Assemblée générale ordinaire 2012
eXchange For Travel (XFT)
Comité fonctionnel et technique présentation publique catalogue xft session3 ...Comité fonctionnel et technique présentation publique catalogue xft session3 ...
Comité fonctionnel et technique présentation publique catalogue xft session3 ...
eXchange For Travel (XFT)
Comprendre le langage xft avec la gestion d'un dossierComprendre le langage xft avec la gestion d'un dossier
Comprendre le langage xft avec la gestion d'un dossier
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec la gestion d'un dossierComprendre le langage xft avec la gestion d'un dossier
Comprendre le langage xft avec la gestion d'un dossier
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comprendre le langage xft avec le processus de venteComprendre le langage xft avec le processus de vente
Comprendre le langage xft avec le processus de vente
eXchange For Travel (XFT)
Comité fonctionnel et technique présentation publique catalogue xft session2 ...Comité fonctionnel et technique présentation publique catalogue xft session2 ...
Comité fonctionnel et technique présentation publique catalogue xft session2 ...
eXchange For Travel (XFT)
Présentation publique comité executif xf tdu 20 septembre 2011Présentation publique comité executif xf tdu 20 septembre 2011
Présentation publique comité executif xf tdu 20 septembre 2011
eXchange For Travel (XFT)
Comité fonctionnel et technique présententation publique xft démat des factur...Comité fonctionnel et technique présententation publique xft démat des factur...
Comité fonctionnel et technique présententation publique xft démat des factur...
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)
Comité technique xft ceto2 session 1+2011 08-30Comité technique xft ceto2 session 1+2011 08-30
Comité technique xft ceto2 session 1+2011 08-30
eXchange For Travel (XFT)

090925 Data Transformation

  • 1. Guidelines for Interoperability in Tourism Data Transformation Wolfram Höpken [email_address] NoFrills Travel & Technology Expo, Bergamo 25.09.2009
  • 2. Data transformation – structured data mapping Structured data mapping Schema mapping : Establishing mappings between local data sources (or database schemas) Datasource-to-ontology mapping : Establishing mappings between a datasource and an ontology Mapping languages Should be fully declarative in order to efficiently define and describe mappings discover inconsistencies and ambiguities in mappings Examples: XSLT, D2R map, R2O
  • 3. Data transformation – structured data mapping Types of clashes between data sources Different naming : Equivalent concepts have different names in different datasources (fully mappable) Different position : Equivalent concepts have different positions within the structure of the datasource (fully mappable) Different scope of concepts: Concepts, containing the same piece of information in different datasources, have different scopes, i.e., the same piece of information might be represented as single concept or as part of several concepts (fully mappable) Different abstraction levels : The same information is represented on different levels of abstraction (partially mappable) Different granularity : The same information is represented on different levels of granularity (partially mappable) Missing concept : A concept in one datasource has no counterpart in the other datasource (not mappable)
  • 4. Data transformation – structured data mapping Short-term recommendations (1–3 years) Use (graphical) mediation tools that automatically map two different data structures Introduce reasoning capabilities within resource mediation tools to automatically suggest inconsistencies Long-term recommendations (3–10 years) Use semantic web technologies (e.g. based on RDF) to name and represent (data) resources on the Web so that mapping can be automatically undertaken Foster high level general ontologies to describe particular domains of interest so that low-level more concrete ontologies can later be linked or merged within the (general) structure
  • 5. Data transformation – semantic annotation Semantic annotation Adding meaning to unstructured, semi-structured or structured content (html documents, word documents, video or audio content, etc.) Based on ontologies as referenced semantic Tagging User-generated semantic annotation Often based on taxonomies Folksonomies Community-generated taxonomies Especially used for annotation of user-generated content
  • 6. Data transformation – semantic annotation Short-term recommendations (1–3 years) Build graphic manual annotation tools that enable transparent semantic annotation and automatic generation of correspondent source code Long-term recommendations (3–10 years) Support natural language processing annotation techniques
  • 7. Data transformation – automatic information extraction Information extraction Structuring unstructured data in a way that it can be automatically analysed, queried and integrated with structured data sources Automatic identification of selected types of entities, relations, or events in free text Named entity recognition Explication of references to organisations, institutions, facilities, places, etc. Machine learning techniques like maximum entropy or hidden markov Current approaches reach up to 90% precision Event extraction Normally template-based extraction of information, built on top of named entity recognition approaches
  • 8. Data transformation – automatic information extraction Short-term recommendations (1–3 years) Foster the use of semantic web technologies to describe non-structured data on the web by the means of resources to make data machine processable Long-term recommendations (3–10 years) Agree on the labels (preferably with intervention of a recognized body such as the W3C) particular tourism content ought to have, so that it is made visible for search engines Develop SW that enables (semi)automatic information annotation according to the previous recommendation