際際滷

際際滷Share a Scribd company logo
Introduction	of	a	paper	by	Bousmalis et	al.	
for	efficient	training	of	grasping	by	simulation
ROS	Japan	UG	#19	C亠僥?AI茶氏
7th December	2017
1
Confidential
センスタイムジャパンAbout	me
? Name:	Taku	Yoshioka
? Interests:	Bayesian	inference,	machine	learning,	
deep	learning	and	robotics
? Robot	and	ROS:	9	months
? Affiliation:	SenseTime	Japan
′ Computer	vision	and	deep	learning
′ https://www.sensetime.jp
′ https://blog.sensetime.jp (lunch	blog)
′ Kyoto,	Tokyo
′ We	are	hiring!
2
Confidential
センスタイムジャパンPrevious	study
3
? Learn	visual	servoing	policy with	a	large-scale	data
obtained	with	14	manipulators
? Train	CNN for	evaluation	of	success	probability	of	
grasping	(target)
Confidential
センスタイムジャパン
4
Confidential
センスタイムジャパンIdea	of	the	study
? Using	simulated	environment to	learn	visual	servoing	
policy	for	grasping	in	real	environment
? Make	simulated	features	close	to	real	ones	by	domain	
adaptation (DA)	on:
′ Feature	vector	in	the	evaluation	network
′ Visual	appearance	of	the	simulated	environment
5
Feature	vector
Visual	appearance
Confidential
センスタイムジャパン
? Fitting	distributions	based	on	random	samples,	without	
likelihood	function	(implicit	learning)
? Adversarial	training (e.g.,	GAN	for	generative	model)
6
Fitting	distributions
Confidential
センスタイムジャパンDA	in	feature	space
? Domain-adversarial	neural	net	(DANN)	[3]
7
Confidential
センスタイムジャパンDA	on	visual	appearance
8
Confidential
センスタイムジャパンDA	on	visual	appearance
9
? GraspGAN:	GAN	+	Label	+	Semantics	(pixel	level)
GAN Label Semantics
Confidential
センスタイムジャパンExperiment
10
? 8M	simulated	data	+	94K?9.4M	real	data
? Sim-only,	Real-only,	Sim	+	Real
? Na?ve	mix,	domain-specific	batch	normalization	(DBN)	+	
visual	randomization,	DBN	+	DANN,	DBN	+	DANN	+	
visual	randomization,	GraspGAN
Confidential
センスタイムジャパンResults
11
DANN(-R):	Feature	DA
GraspGAN:	Feature	DA	+	Visual	DA
Confidential
センスタイムジャパン
12
? Findings:
′ Efficient	training	by	simulated	data
′ Improvement	of	policy	by	visual	appearance	DA
? Future	study
′ Consider	physical	discrepancy
′ Other	sensor	(e.g.,	depth)
′ Further	improvement	of	success	rate	of	the	task
Confidential
センスタイムジャパンReferences
13
[1]	Bousmalis,	K.,	Irpan,	A.,	Wohlhart,	P.,	Bai,	Y.,	Kelcey,	M.,	
Kalakrishnan,	M.,	...	&	Levine,	S.	(2017).	Using	simulation	and	
domain	adaptation	to	improve	efficiency	of	deep	robotic	
grasping. arXiv	preprint	arXiv:1709.07857.
[2] Levine,	S.,	Pastor,	P.,	Krizhevsky,	A.,	Ibarz,	J.,	&	Quillen,	D.	
(2016).	Learning	hand-eye	coordination	for	robotic	grasping	with	
deep	learning	and	large-scale	data	collection. The	International	
Journal	of	Robotics	Research,	0278364917710318.
[3]	Ganin,	Y.,	Ustinova,	E.,	Ajakan,	H.,	Germain,	P.,	Larochelle,	H.,	
Laviolette,	F.,	...	&	Lempitsky,	V.	(2016).	Domain-adversarial	training	
of	neural	networks. Journal	of	Machine	Learning	Research, 17(59),	
1-35.

More Related Content

20171207 domain-adaptation