The slides of Artificial Intelligence and Entertainment Science (AIES) Workshop 2021 Keynote lecture
https://aies.info/program/
Empathic Entertainment in Digital Game
A digital game give a unique experience to a user. AI system in Digital game consists of three kinds of AI such as Meta-AI, Character AI, and Spatial AI. Game experience is formed by them. Meta-AI keeps watching a status of game and controlling characters, objects, terrain, weather and so on dynamically to make many dramatic and empathic situations in a game for users. Character AI is a brain of an autonomous game character to make a decision by itself, but sometimes it acts to achieve a goal issued from Meta-AI. Spatial AI analyses a terrain and abstracts its features to communicate them to Meta-AI and Character-AI. They can make their intelligent decisions by using specific terrain and environment features. The AI system is called MCS-AI dynamic cooperative model (Meta-AI, Character AI, and Spatial AI dynamic cooperative model). In the lecture, I will explain the system by showing some cases of published digital games.
The document discusses the differences between making a microwave and creating artificial intelligence. It explores how intelligence may have common principles across different animals and how studying biology can help understand intelligence and realize it in computers and robots. It also discusses approaches to building AI through engineering as well as understanding what intelligence is through philosophy and science. Finally, it discusses game engines and their role in simulating physical, chemical, economic, social and biological rules to create virtual worlds.
42. AlphaGoとDeep Learning
予兆と関連研究
-2014年~2015年に関連する研究が発表されていた
?Christopher Clark, Amos Storkey: Teaching Deep Convolutional
Neural Networks to Play Go, arXiv:1412.3409 (2014).
?Maddison, Chris J., Huang, Aja, Sutskever, Ilya, and Silver, David:
Move Evaluation in Go Using Deep Convolutional Neural
Networks, arXiv:1412.6564, (2014).
?Yuandong Tian, Yan Zhu: Better Computer Go Player with Neural
Network and Long-term Prediction, arXiv:1511.06210, (2015).
-プロ棋士の棋譜データを教師データとするディープラーニン
グを用いることで、プロ棋士の手を予測するシステムを作るとい
うもの
→これまでの予測器が40%前半ぐらいだったものが、これらの研
究では50%を上回るもの、最高では57%にも及ぶ
67. Dragon Age : Way Point
Dragon Age pathfinding program put to the test
https://www.youtube.com/watch?v=l7YQ5_Nbifo
68. メタAI(=AI Director)によるユーザーのリラックス度に応じた敵出現度
ユーザーの緊張度
実際の敵出現数
計算によって
求められた
理想的な敵出現数
Build Up …プレイヤーの緊張度が目標値を超えるまで
敵を出現させ続ける。
Sustain Peak … 緊張度のピークを3-5秒維持するために、
敵の数を維持する。
Peak Fade … 敵の数を最小限へ減少していく。
Relax … プレイヤーたちが安全な領域へ行くまで、30-45秒間、
敵の出現を最小限に維持する。
Michael Booth, "The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
より具体的なアルゴリズム
72. 強化学習
(例)格闘ゲームTaoFeng におけるキャラクター学習
Ralf Herbrich, Thore Graepel, Joaquin Qui?onero Candela Applied Games Group,Microsoft Research Cambridge
"Forza, Halo, Xbox Live The Magic of Research in Microsoft Products"
http://research.microsoft.com/en-us/projects/drivatar/ukstudentday.pptx
73. 強化学習
(例)格闘ゲームTaoFeng におけるキャラクター学習
Ralf Herbrich, Thore Graepel, Joaquin Qui?onero Candela Applied Games Group,Microsoft Research Cambridge
"Forza, Halo, Xbox Live The Magic of Research in Microsoft Products"
http://research.microsoft.com/en-us/projects/drivatar/ukstudentday.pptx
Microsoft Research Playing Machines: Machine Learning Applications in Computer Games
http://research.microsoft.com/en-us/projects/mlgames2008/
Video Games and Artificial Intelligence
http://research.microsoft.com/en-us/projects/ijcaiigames/