ݺߣ

ݺߣShare a Scribd company logo
7 วิชา คณิต   the brain
7 วิชา คณิต   the brain
7 วิชา คณิต   the brain
F 7 ( )
F 7 . . 2555
1 10 F F 2
1. F ก F3 − 2x − 3x − 7 ≥ 0 [a,b]
F a + b F F ก F
6
ก F 2x − 3 − 3x − 7 ≥ 0
2x − 3 ≥ 3x − 7
[(2x − 3) − (3x − 7)][(2x − 3) + (3x − 7)] ≥ 0
(−x + 4)(5x − 10) ≥ 0
(x − 4)(5)(x − 2) ≤ 0
∴ [a,b] = [2,4]
a + b = 2 + 4 = 6
2. F S ˈ n . . . 720 n F F ก 10800
F ก S F F F F ก F
675
ก F
720 = 24 × 32 × 5
n = 2a × 3b × 5c
[720, n] = 24 × 33 × 52
F F n = ก [720, n] = F2a × 3b × 5c 24 × 33 × 52
a = 0, 1, 2, 3, 4 b = 3 c = 2
n F = 20 × 33 × 52 = 675
+ +-
42
1
3. F F ก Fsec2(2 tan−1 2 )
9
F A = tan−1 2 → tan A = 2
=sec2(2 tan−1 2 ) sec22A = 1
cos22A
= 1



1− tan2A
1+ tan2A



2
= 1


1− 2
1+ 2


2
= 9
4. ก F O ˈ ก A = (1,−4,−3) B = (3,−6,2)
F C ˈ OB F AC กก OB F OC F
3
OA = i − 4j − 3k
OB = 3i − 6j + 2k
= ProjectionOC OA OB = Pr ojOBOA
=OC (OA ⋅ OB) OB
OB
2
=OC OA ⋅ OB
OB
OB
2
=
OA⋅OB
OB
=
(1)(3) +(−4)(−6)+ (−3)(2)
32 +(−6)2 + 22
= 3
5. ก ก F F ก F3x + 32−x = 4 3
2
= =3x + 32
3x 4 3 3x 3 ,3 3
= =32x + 9 4 3 (3x) 3x 3
1
2 ,3
3
2
= 0 x =32x − 4 3 (3x) + 9 1
2
, 3
2
= 0 ∴ ก(3x − 3 )(3x − 3 3 ) = 1
2
+ 3
2
= 2
A(1, -4, -3)
B(3, -6, 2)O(0, 0, 0)
C
2
6. F F x F F ก Flog 
x + 27log32
 = 1
2
= 1log[x + 33 log32
]
= 1log[x + 3log323
]
= 1log [x + 8]
=x + 8 101
∴ x = 2 F ˈ
7. ก ก F

x2 + 2
x3


10
F F F F F F ก F
3,360
กก ก F(a + b)n Tr+1 = 

n
r

 an −r br
ก F Tr+1 = 

10
r

 (x2)10 −r

2
x3


r
= 

10
r

 (2r)(x20 −2r)(x−3r)
F F ก F F F ก x ˈ 0
∴r = 420 − 2r − 3r = 0
∴ F F T4+ 1 = 

10
4

 (24) = 3,360
8. ก F ก 5 F F F ก
ก F ˈ F ก ก ก
ก F 86 F F F F ก ก ˈ
90 F F F F F ก 5 F ก ก F F
98%
µw =
w1x1 + w2x2 +w3x3 +w4x4 +w5x5
w1 +w2 +w3 +w4 +w5
µw =
1⋅x1 +1⋅ x2 + 1⋅x3 +1⋅ x4 +2 ⋅x5
1+ 1+1 +1+ 2
µw =
(x1 +x2 +x3 +x4)+ 2x5
6
90 =
86× 4+2x5
6
x5 = 98
3
9. ก F ˈ F ก ˈL1 4x − 3y + 10 = 0
ˈ F F FL2 y = x2 − 8
3
x + 7
3
F ก F F F F F ก FL2 L1 L1 L2
3
y = x2 − 8
3
x + 7
3
. .. mL1
= 4
3
L1 //L2
∴mL2
= m = 4
3
. m = m F
(a, b) 4
3
= 2x − 8
3
4x − 3y + 10 = 0 4
3
= 2a − 8
3
∴ a = 2
(a, b) F F F y = x2 − 8
3
x + 7
3
→ b = 22 − 8
3
(2) + 7
3
= 1
∴ (2, 1)
F F ก F ก ก ก (a, b)L1 L2 L1
ก d =
Ax1 +By1+C
A2 +B2
=
4(2) −3(1)+10
42 +(−3)2
= 15
5
= 3
10. F F ก F
2
0
∫ 6x x − 2 dx
8
F Fx ∈ [0,2] x − 2 = − (x − 2) = 2 − x
=
2
0
∫ 6x x − 2 dx
2
0
∫ 6x(2 − x)dx =
2
0
∫ (12x − 6x2)dx
= 6x2 − 2x3 2
0
= 24 − 16 = 8
(a,b)
L1
L2
d
m = 4
3
m = 4
3
4
2 20 F F 4
11. ก F P(x) ˈ ก 3 F F ก P(x)x − 1,x − 2 x − 3
F 1 P(x) F P(5) F F ก F Fx − 4
1. 2.−3 −1
3. 0 4. 2
5. 3
1
ก F F F
P(x) = a(x − 1)(x − 2)(x − 3) + 1
P(4) = 0
P(4) = a(4 − 1)(4 − 2)(4 − 3) + 1
0 = 6a + 1 → a = − 1
6
P(x) = −1
6
(x − 1)(x − 2)(x − 3) + 1
∴ P(5) = −1
6
(4)(3)(2) + 1 = − 3
12. F z ˈ F F ก กIm(z) > 0
F F ก F F

z +
3
2



2
= − 1
4
z8
1. 2.−
3
2
− 1
2
i −
3
2
+ 1
2
i
3. 4.1
2
−1
2
−
3
2
i
5. −1
2
+
3
2
i
5
=

z +
3
2



2
−1
4
=z +
3
2
1
2
i,−1
2
i
z = −
3
2
+ 1
2
i , −
3
2
− 1
2
i
∴ =z8 

−
3
2
+ 1
2
i



8
= (cis5π
6
)8 = cis20π
3
= cis(6π + 2π
3
) = cis2π
3
= cos 2π
3
+ i sin 2π
3
= − 1
2
+
3
2
i
F F F Im(z) > 0
5
13. ก F a, b ˈ ก ab − 25a − 25b = 1575
F . . . F F F ก F F(a,b) = 5 a − b
1. 15 2. 45
3. 90 4. 210
5. 435
1
ก F = 1575a(b − 25) − 25b
= 1575 + 625a(b − 25) − 25b + 625
= 2200a(b − 25) − 25(b − 25)
= 2200(a − 25)(b − 25)
ก (a, b) = 5 F a = 5k1 , b = 5k2 k1,k2 ∈ I+ (k1,k2) = 1
∴ = 2200(5k1 − 25)(5k2 − 25)
= 2200(5)(k1 − 5)(5)(k2 − 5)
= 88(k1 − 5)(k2 − 5)
1
k1- 5 k2- 5 k1 k2 (k1, k2) = 1
88
44
22
11
1
2
4
8
93
49
27
16
6
7
9
13
×
×
×
Fa = 5(16) = 80 , b = 5(13) = 65 a − b = 15
1 ก กk1 > k2 (a > b)
F ˈ F ก F Fk1 < k2 (a < b)
a = 65 , b = 80 F F F กa − b
6
14. ก F ˈ ก F ˂ F กu v
F F ก ˈ F F ก 3 Fu v
F 1 5 F Fu v
F F ก F F(2u + v) ⋅ (u − v)
1. 2.−27 −19
3. 0 4. 19
5. 27
2
ก F u = 1 , v = 5
F = u × v
3 = u v sin θ
3 = (1)(5)sin θ
=sin θ 3
5
F = ( Fcos θ −4
5
cos θ
ก ˂ F ก )u v
∴ =(2u + v) ⋅ (u − v) 2u ⋅ u − 2u ⋅ v + v ⋅ u − v ⋅ v
= 2 u 2 − u ⋅ v − v 2 u v cos θ
= 2(1)2 − (1)(5)
−4
5

 − 52
= −19
u
v
0
7
15. ก F H ˈ F ก ˈ 9x2 − 72x − 16y2 − 32y = 16
F E ˈ F ก H Fก F ก
F E ก F F1
5
1. 2.( x−4)2
25
+
(y+ 1)2
16
= 1
(x +4)2
25
+
(y−1)2
16
= 1
3. 4.(x −4)2
25
+
(y+1)2
20
= 1
(x +4)2
25
+
(y−1)2
20
= 1
5. (x −4)2
16
+
(y+1)2
9
= 1
3
ก ก HYPER = 169x2 − 72x − 16y2 − 32y
=9(x2 − 8x + 42) − 16(y2 + 2y + 12) 16 + 144 − 16
= 1449(x − 4)2 − 16(y + 1)2
= 1(x −4)2
16
−
(y+1)2
9
= 5c = + = 16 + 9
*** ก ก HYPER F F F
F F ***
F F ก HYPER F
e = 1
5
→ c
a = 1
5
→ c
5
= 1
5
→ c = 5
ก a2 = b2 + c2
F 52 = b2 + ( 5 )2 → b2 = 20
∴ ก (x −4)2
25
+
(y+1)2
20
= 1
ก F
(9, -1)(4, -1)(-1, -1)
55
y
x
'
'
8
16. ก F ABC A B ˈ
F cos 2A + 3 cos 2B = − 2 cos A − 2 cos B = 0
F F F ก F Fcos C
1. 2.1
5
( 3 − 2 ) 1
5
( 3 + 2 )
3. 4.1
5
(2 3 − 2 ) 1
5
( 2 + 2 3 )
5. 1
5
(2 2 − 3 )
3
cos A = 2 cos B (1)
2 cos2A − 1 + 3(2 cos2B − 1) = − 2
2 cos2A + 6 cos2B = 2
2( 2 cos B)2 + 6 cos2B = 2
B ˈcos2B = 1
5
→ cos B = 1
5
. .
.
(1)cos B ,cos A =
2
5
=cos C cos [180 − (A + B)] = − cos (A + B) = − [cos A cos B − sin A sin B]
= −



2
5
⋅ 1
5
−
3
5
⋅ 2
5


 = 1
5

2 3 − 2 

A
5 3
2
5 2
1
9
17. F x, y, z F ก ก = a2x + y + 2z
= bx + y − z
= c3x + 2y − 2z
F F
2 −1 −2
2 2 4
a b c
= 24
F x F F ก F F
1. 2. 3. 0 4.−4 −4
5
4
5
5. 4
5
ก F
2 −1 −2
2 2 4
a b c
= 24
1 ก 3 :
a b c
2 2 4
2 −1 −2
= − 24
2 ก ก 2 : 2
a b c
1 1 2
2 −1 −2
= − 24 →
a b c
1 1 2
2 −1 −2
= − 12
ก Fdet A = det At
a 1 2
b 1 −1
c 2 −2
= − 12
กก F
x =
a 1 2
b 1 −1
c 2 −2
2 1 2
1 1 −1
3 2 −2
= −12
−3
= 4
10
18. ก F A ˈ ก F i = 1, 2, 33 × 3 AXi = Bi
F X1 =





1
0
5





, X2 =





1
2
5





, X3 =





1
3
1





B1 =





1
0
0





, B2 =





0
1
0





, B3 =





0
0
1





F F F ก F Fdet (A)
1. 2. 3. 4. 1−8 −1
8
1
8
5. 8
2
ก F i = 1, 2, 3AXi = Bi
F AX1 = B1 → A





1
0
5





=





1
0
0





AX2 = B2 → A





1
2
5





=





0
1
0





AX3 = B3 → A





1
3
1





=





0
0
1





A





1 1 1
0 2 3
5 5 1





=





1 0 0
0 1 0
0 0 1





take det 2 F ก
F =(det A)
1 1 1
0 2 3
5 5 1
det I
= 1(det A)(−8)
=det A −1
8
11
19. F S1 = {x log 1
2
(x + 1) + 2 log1
4
(x + 2) − log1
2
(9x − 3) ≤ 0}
ˈS2 = {x x −10 ≤ x ≤ 10}
F ก F ก F FS1 ∩ S2
1. 5 2. 6 3. 7 4. 8
5. 9
3
log1
2
(x + 1) + 2 log


1
2


2(x + 2) − log1
2
(9x − 3) ≤ 0
log1
2
(x + 1) + log1
2
(x + 2) − log1
2
(9x − 3) ≤ 0
log1
2


(x+ 1)(x +2)
9x−3


≤ 0 →
(x+1)(x+ 2)
9x −3
≤ 

1
2


0
(x + 1)(x + 2) ≤ 9x − 3 → x2 + 3x + 2 ≤ 9x − 3
x2 − 6x + 5 ≥ 0 → (x − 1)(x − 5) ≥ 0
log : x + 1 > 0 x + 2 > 0 9x − 3 > 0
x > − 1 x > − 2 x > 1
3
x > 1
3
∴ S1 = (1
3
,1] ∪ [5,∞)
∴ S1 ∩ S2 = {1,5,6,7,8,9,10}
+ +-
51
513
1
12
20. ก ก 7 1, 2, 3, 4, 5, 6, 7 กF 7
1, 2, 3, 4, 5, 6, 7 ก F ก กF k F กก F
F ก ก F ก F Fk − 1
1. 32 2. 60 3. 64 4. 120
5. 128
3
กF ก F
7 6, 7 2
6 5, 6, 7 2 ( F ก ก 7 กF F )
5 4, 5, 6, 7 2 ( F ก ก 7, 6 กF F )
4 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5 กF F )
3 2, 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5, 4 กF F )
2 1, 2, 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5, 4, 3 กF F )
1 1, 2, 3, 4, 5, 6, 7 1 ( ก 1 )
∴ = 2 × 2 × 2 × 2 × 2 × 2 × 1 = 64
13
21. F ˈ กก F ก ก F
F F ก ก 3 F F F F
F F
1. F 2.
3. F 4. F
5. F
2
ก ก 3 F 3µ,Med
F F FM.D.,σ
=
xmax −xmin
xmax +xmin
F F F 6xmax − xmin xmax + xmin
22. ก F F ก ก ก
F ก ก 117.8 ก F 67% ก ก 126.7 ก
F 9% F F F ก F ก F 125 ก
F ก F F ก F F F ก
Z 0.17 0.44 1 1.1 1.2 1.34
F F F 0.4554 0.1700 0.3413 0.3643 0.3849 0.41
1. 84.13 2. 86.43 3. 88.49 4. 89.25
5. 90
1
ก F
17%(A = 0.17)
41%(A = 0.41)
x1= 117.8 x2= 126.7
14
Z1 = − 0.44 Z2 = 1.34
ก ∆Z = ∆x
σ → σ = ∆x
∆Z
= 126.7−117.8
1.34−(−0.44)
= 5
ก Z1 =
x1 −µ
σ → − 0.44 =
117.8 −µ
5
→ µ = 120
x3 = 125 → Z3 = 125− 120
5
= 1 → A3 = 0.3413
A = 0.5 + 0.3413 = 0.8413
ˈ 84.13%
23. ก ก ก Y F (3, 9)
F (1, 5) ʽ F F ก X
F ก F F
1. 9 F 2. 18 F
3. 27 F 4. 36 F
5. 54 F
4
ก , =(x − h)2 4c(y − k)
=(x − 3)2 4c(y − 9)
F (1, 5) : =(1 − 3)2 4c(5 − 9)
∴ 4c = −1
ก =(x − 3)2 −(y − 9)
y = 0 : = 9(x − 3)2
=x − 3 3,−3
∴ x = 6, 0
∴ ʽ F F= 2
3
(6)(9) = 36
z3= 1
y
x
(1,5)
2
v(3,2)
0 6
9
6
15
24. ก F g ˈ ˆ กF ˈ F(2,−1)
ก g F (1, 4) F c ˈ F F ˆ กF f
f(x) =





(cx2 + 1)g(x)
2x + 10
x ≥ 1
x < 1
F x = 1 F F F ก F Ff (2)
1. 2. 3. 0 4. 4−8 −4
5. 8
1
ก g F (2,−1) → g (2) = 0 , g(2) = − 1
ก g F (1,4) → g(1) = 4
f F x = 1 : 1( ) = 1( F )
= 12(c + 1)g(1)
= 12 ∴c = 2(c + 1)(4)
x = 1 f(x) = (2x2 + 1)g(x)
=f (x) (2x2 + 1)g (x) + g(x)(4x)
∴ =f (2) (9)g (2) + g(2)(8)
= (9)(0) + (−1)(8) = − 8
25. F an =





n
2n
F F F ก F F
40
k= 1
Σ ak
1. 860 2. 1060 3. 1080 4. 1240
5. 1440
4
=
40
k= 1
Σ ak a1 + a2 + a3 + a4 + ..... + a39 + a40
= (a1 + a3 + a5 + ..... + a39) + (a2 + a4 + a6 + ..... + a40)
= (1 + 3 + 5 + ......... + 39) + (4 + 8 + 12 + ......... + 80)
= 20
2
(1 + 39) + 20
2
(4 + 80) = 400 + 840 = 1240
n ˈ
n ˈ F
20 F 20 F
16
26. F a ˈ FA =



a 1 − a
1 + a −a


 I =



1 0
0 1



F F ก F Fdet(A − 2 I)(A − 3 I)(A − 5 I)(A − 7 I)
1. 2.48 − 13a (a − 2 )(a − 3 )(a − 5 )(a − 7 )
3. 17a 4. 17
5. 48
5
=A − xI



a 1 − a
1 + a −a


 − x



1 0
0 1


 =



a − x 1 − a
1 + a −(a + x)



=A − xI −(a − x)(a + x) − (1 + a)(1 − a)
= −(a2 − x2) − (1 − a2) = − a2 + x2 − 1 + a2 = x2 − 1
∴det(A − 2 I)(A − 3 I)(A − 5 I)(A − 7 I)
= [( 2 )2 − 1][( 3 )2 − 1][( 5 )2 − 1][( 7 )2 − 1] = (1)(2)(4)(6) = 48
27. ก F ˈ ก ˈEn
x2
an
2
+
y2
bn
2
= 1
n = 1, 2, 3, .....an = 2 bn ≥ 0
F ˈ ก กa1 = 2 En En−1 n ≥ 2
F F F ก F F
∞
n= 1
Σ an
1. 2. 3. 4. 156 + 4 3 8 + 4 3 10 + 4 3
5. 17
2
ก F กbn =
an
2
c = a2 − b2
a1 = 2 , b1 = 1 , c1 = a1
2
− b1
2
= 3
a2 = c1 = 3 , b2 =
3
2
, c2 = a2
2
− b2
2
= 3
2
a3 = c2 = 3
2
∴ =
∞
n= 1
Σ an a1 + a2 + a3 + .....
= 2 + 3 + 3
2
+ ..... r =
3
2
= 2
1 −
3
2
= 4
2− 3
= 4(2 + 3 ) = 8 + 4 3
17
28. F F
1. F x = 0f(x) = x x + 1
2. F x = 0f(x) = x
x+1
3. F x = 0f(x) = x (x + 1)
4. F x = 0f(x) = x2 x + 1
5. F x = 0f(x) = x x
3
F f F x = 0 F F ก F F ก0− 0+
ก 1 : Ff(x) = x x + 1 x = 0− x = 0+
f(x) F F ก f(x) = x(x + 1) = x2 + x → f (x) = 2x + 1
∴ F f(x) F x = 0f (0−) = f (0+) = 2(0) + 1 = 1
ก 2 : Ff(x) = x
x+1
x = 0− x = 0+
f(x) F F ก f(x) = x
x+1
→ f (x) =
(x+1)(1)− x(1)
(x+1)2
= 1
(x+1)2
∴ F f(x) F x = 0f (0−) = f (0+) = 1
(0 +1)2
= 1
ก 3 : f(x) = x (x + 1)
: f(x) =x = 0− (−x)(x + 1) = − x2 − x
=f (x) −2x − 1 → f (0−) = − 2(0) − 1 = − 1
: f(x) =x = 0+ x(x + 1) = x2 + x
=f (x) 2x + 1 → f (0+) = 2(0) + 1 = 1
F ∴f(x) F F x = 0f (0−) ≠ f (0+)
ก 4 : Ff(x) = x2 x + 1 x = 0− x = 0+
f(x) F F ก f(x) = x2(x + 1) = x3 + x2 → f (x) = 3x2 + 2x
∴ F f(x) F x = 0f (0−) = f (0+) = 0
ก 5 f(x) = x x
:x = 0− f(x) = x(−x) = − x2 → f (x) = − 2x → f (0−) = 0
:x = 0+ f(x) = x(x) = x2 → f (x) = 2x → f (0+) = 0
F ∴ f(x) F x = 0f (0−) = f (0+)
18
29. ก F F ก F a1,a2,...,a91
an =





n
3 + 4n
F F F ก F F
1. 63 2. 68 3. 71 4. 74
5. 76
4
ก F F F
a1 = 7 , a3 = 15 , a5 = 23 , a7 = 31 , a9 = 39 , .....
a2 = 2 , a4 = 4 , a6 = 6 , a8 = 8 , a10 = 10 , a12 = 12 , a14 = 14
a16 = 16 , a18 = 18 , a20 = 20 , a22 = 22 , a24 = 24 , .....
F ก F ก
2, 4, 6, 7 , 8, 10, 12, 14, 15, 16, 18, 20, 22, 23, 24, 26, 28, 30, 31
32, 34, 36, 38, 39, 40, ....., 70, 71, 72, 74, ....., 90, 367
F a1 = x4 = 7 , a3 = x9 = 15 , a5 = x14 = 23 , a7 = x19 = 31
a9 = x24 = 39 , a11 = x29 = 47 , a13 = x34 = 55 , a15 = x39 = 63
a17 = x44 = 71 , a19 = x49 = 79
∴Med = x46 = 74
n ˈ ก F
n ˈ ก
x4 x9 x14 x19
x24 x44 x46 x91
19
30. ก F M =






a b
c d


 a,b,c,d ∈ {−1,0,1}



F F ก ก F ก F ก F F ˈ F ก FM
F ก F F ก F F
1. 2. 3. 4.24
81
31
81
33
81
48
81
5. 50
81
4
F A =



a b
c d


 a,b,c,d ∈ {−1,0,1}
(a, b, c, d ก F 3 , 0, 1)n(S) = 3 × 3 × 3 × 3 = 81 −1
E : F ก F F ก Non-Singular Matrix→
∴det A ≠ 0
:nnnn((((EEEE )))) det A = 0
det A =
a b
c d ad
−bc
= ad − bc = 0 → ad = bc
F F ad bc ˈ Fa,b,c,d ∈ {−1,0,1} −1,1,0
ก ad = bc 3 ก
ก 1 2 (1)(1) กad = bc = 1 → ad = 1 (−1)(−1)
2 (1)(1) กbc = 1 (−1)(−1)
∴ก 1 2 × 2 = 4
ก 2 2 กad = bc = − 1 → ad = − 1 (1)(−1) (−1)(1)
2 กbc = − 1 (1)(−1) (−1)(1)
∴ก 2 2 × 2 = 4
ก 3 5ad = bc = 0 → ad = 0 (0)(0),(0)(1),(0)(−1),
(−1)(0),(1)(0)
5bc = 0 (0)(0),(0)(1),(0)(−1),
(−1)(0),(1)(0)
∴ก 3 5 × 5 = 25
∴ 3 ก 4 + 4 + 25 = 33
20
n(E) = n(S) − n(E ) = 81 − 33 = 48
∴ P(E) = 48
81
****
21
Ad

Recommended

PDF
008 math a-net
Nuttarika Kornkeaw
PDF
ข้อสอบ Pat 1 + เฉลย
AunJan
PDF
Key pat1 3-52 math
Arisara Fungthanakul
PDF
Ma5 vector-u-s54
S'kae Nfc
PDF
Math quota-cmu-g-455
Rungroj Ssan
PDF
Real problem2 p
Thanuphong Ngoapm
PDF
Function problem p
Thanuphong Ngoapm
PDF
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Cikgu Pejal
PDF
Trial terengganu 2014 spm add math k1 skema [scan]
Cikgu Pejal
PDF
Add Maths 1
morabisma
PDF
Skema SPM SBP Add Maths Paper 2012
Tuisyen Geliga
PDF
Trial pahang 2014 spm add math k2 dan skema [scan]
Cikgu Pejal
PDF
๶ลྺยกกำลัง
kuraek1530
PDF
Examens math
Chennoufi Med
PDF
Kelantan mtambahan + skema
Shopink Wonderland
PDF
๶ลྺยกกำลังชุด 2
kanjana2536
PDF
Ejercicios varios de algebra widmar aguilar
Widmar Aguilar Gonzalez
PDF
Key pat1 3-52
chanoknunsp
PDF
Key pat1 1-53
chanoknunsp
PDF
07122555 0937185627
faisupak
PDF
ลิมิต
srisuwanthum
PDF
Asso5411
Maethus
PDF
Converted by pdf suite
duangduand

More Related Content

What's hot (14)

PDF
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Cikgu Pejal
PDF
Trial terengganu 2014 spm add math k1 skema [scan]
Cikgu Pejal
PDF
Add Maths 1
morabisma
PDF
Skema SPM SBP Add Maths Paper 2012
Tuisyen Geliga
PDF
Trial pahang 2014 spm add math k2 dan skema [scan]
Cikgu Pejal
PDF
๶ลྺยกกำลัง
kuraek1530
PDF
Examens math
Chennoufi Med
PDF
Kelantan mtambahan + skema
Shopink Wonderland
PDF
๶ลྺยกกำลังชุด 2
kanjana2536
PDF
Ejercicios varios de algebra widmar aguilar
Widmar Aguilar Gonzalez
Trial penang 2014 spm matematik tambahan k1 k2 skema [scan]
Cikgu Pejal
Trial terengganu 2014 spm add math k1 skema [scan]
Cikgu Pejal
Add Maths 1
morabisma
Skema SPM SBP Add Maths Paper 2012
Tuisyen Geliga
Trial pahang 2014 spm add math k2 dan skema [scan]
Cikgu Pejal
๶ลྺยกกำลัง
kuraek1530
Examens math
Chennoufi Med
Kelantan mtambahan + skema
Shopink Wonderland
๶ลྺยกกำลังชุด 2
kanjana2536
Ejercicios varios de algebra widmar aguilar
Widmar Aguilar Gonzalez

Similar to 7 วิชา คณิต the brain (20)

PDF
Key pat1 3-52
chanoknunsp
PDF
Key pat1 1-53
chanoknunsp
PDF
07122555 0937185627
faisupak
PDF
ลิมิต
srisuwanthum
PDF
Asso5411
Maethus
PDF
Converted by pdf suite
duangduand
PDF
ผลงาȨ่อมรถโึϸสาร
WeIvy View
PDF
๶ลྺยกกำลัง
kunnikarr
PDF
Ma4 set-u-s54
Koku Love
PDF
ใบงานแผนที่ 1
kunnikarr
PDF
008 math a-net
Sasitorn Kapana
PDF
การสอบ ย่อยและกลางภาคม.4
krukanidfkw
Key pat1 3-52
chanoknunsp
Key pat1 1-53
chanoknunsp
07122555 0937185627
faisupak
ลิมิต
srisuwanthum
Asso5411
Maethus
Converted by pdf suite
duangduand
ผลงาȨ่อมรถโึϸสาร
WeIvy View
๶ลྺยกกำลัง
kunnikarr
Ma4 set-u-s54
Koku Love
ใบงานแผนที่ 1
kunnikarr
008 math a-net
Sasitorn Kapana
การสอบ ย่อยและกลางภาคม.4
krukanidfkw
Ad

More from Jamescoolboy (20)

PDF
ข้อสอบ Pat 2 ปี 52
Jamescoolboy
PDF
ข้อสอบ GAT ภาษาอังกฤษ ปี 52
Jamescoolboy
PDF
ข้อสอบ PAT 1 ปี 53
Jamescoolboy
PDF
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 53
Jamescoolboy
PDF
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 52
Jamescoolboy
PDF
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 51
Jamescoolboy
PDF
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 50
Jamescoolboy
PDF
โครงงานพีระมิด พลังงาน และความลับของจักรวาล
Jamescoolboy
PDF
ใบงานเรื่อง Blog
Jamescoolboy
PDF
ข้อสอบสังคมศึกษา
Jamescoolboy
PDF
ข้อสอบภาษาอังกฤษพร้อมเฉลย
Jamescoolboy
PDF
ข้อสอบภาษาไทย
Jamescoolboy
PDF
ข้อสอบฟิสิกส์พร้อม๶ฉลย
Jamescoolboy
PDF
ข้อสอบชีววิทยา
Jamescoolboy
PDF
ข้อสอบ๶คมีพร้อม๶ฉลย
Jamescoolboy
PDF
ข้อสอบคณิตศาสตร์
Jamescoolboy
PDF
ประวัติส่วȨัว
Jamescoolboy
PDF
ประวัติส่วȨัว
Jamescoolboy
PDF
ประวัติส่วȨัว
Jamescoolboy
PDF
ประวัติส่วȨัว
Jamescoolboy
ข้อสอบ Pat 2 ปี 52
Jamescoolboy
ข้อสอบ GAT ภาษาอังกฤษ ปี 52
Jamescoolboy
ข้อสอบ PAT 1 ปี 53
Jamescoolboy
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 53
Jamescoolboy
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 52
Jamescoolboy
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 51
Jamescoolboy
ข้อสอบ O-Net วิชาสุขศึกษาและพลศึกษา ศิลปะ การงานอาชีพและเทคโนโลยี ปี 50
Jamescoolboy
โครงงานพีระมิด พลังงาน และความลับของจักรวาล
Jamescoolboy
ใบงานเรื่อง Blog
Jamescoolboy
ข้อสอบสังคมศึกษา
Jamescoolboy
ข้อสอบภาษาอังกฤษพร้อมเฉลย
Jamescoolboy
ข้อสอบภาษาไทย
Jamescoolboy
ข้อสอบฟิสิกส์พร้อม๶ฉลย
Jamescoolboy
ข้อสอบชีววิทยา
Jamescoolboy
ข้อสอบ๶คมีพร้อม๶ฉลย
Jamescoolboy
ข้อสอบคณิตศาสตร์
Jamescoolboy
ประวัติส่วȨัว
Jamescoolboy
ประวัติส่วȨัว
Jamescoolboy
ประวัติส่วȨัว
Jamescoolboy
ประวัติส่วȨัว
Jamescoolboy
Ad

7 วิชา คณิต the brain

  • 4. F 7 ( ) F 7 . . 2555 1 10 F F 2 1. F ก F3 − 2x − 3x − 7 ≥ 0 [a,b] F a + b F F ก F 6 ก F 2x − 3 − 3x − 7 ≥ 0 2x − 3 ≥ 3x − 7 [(2x − 3) − (3x − 7)][(2x − 3) + (3x − 7)] ≥ 0 (−x + 4)(5x − 10) ≥ 0 (x − 4)(5)(x − 2) ≤ 0 ∴ [a,b] = [2,4] a + b = 2 + 4 = 6 2. F S ˈ n . . . 720 n F F ก 10800 F ก S F F F F ก F 675 ก F 720 = 24 × 32 × 5 n = 2a × 3b × 5c [720, n] = 24 × 33 × 52 F F n = ก [720, n] = F2a × 3b × 5c 24 × 33 × 52 a = 0, 1, 2, 3, 4 b = 3 c = 2 n F = 20 × 33 × 52 = 675 + +- 42 1
  • 5. 3. F F ก Fsec2(2 tan−1 2 ) 9 F A = tan−1 2 → tan A = 2 =sec2(2 tan−1 2 ) sec22A = 1 cos22A = 1    1− tan2A 1+ tan2A    2 = 1   1− 2 1+ 2   2 = 9 4. ก F O ˈ ก A = (1,−4,−3) B = (3,−6,2) F C ˈ OB F AC กก OB F OC F 3 OA = i − 4j − 3k OB = 3i − 6j + 2k = ProjectionOC OA OB = Pr ojOBOA =OC (OA ⋅ OB) OB OB 2 =OC OA ⋅ OB OB OB 2 = OA⋅OB OB = (1)(3) +(−4)(−6)+ (−3)(2) 32 +(−6)2 + 22 = 3 5. ก ก F F ก F3x + 32−x = 4 3 2 = =3x + 32 3x 4 3 3x 3 ,3 3 = =32x + 9 4 3 (3x) 3x 3 1 2 ,3 3 2 = 0 x =32x − 4 3 (3x) + 9 1 2 , 3 2 = 0 ∴ ก(3x − 3 )(3x − 3 3 ) = 1 2 + 3 2 = 2 A(1, -4, -3) B(3, -6, 2)O(0, 0, 0) C 2
  • 6. 6. F F x F F ก Flog  x + 27log32  = 1 2 = 1log[x + 33 log32 ] = 1log[x + 3log323 ] = 1log [x + 8] =x + 8 101 ∴ x = 2 F ˈ 7. ก ก F  x2 + 2 x3   10 F F F F F F ก F 3,360 กก ก F(a + b)n Tr+1 =   n r   an −r br ก F Tr+1 =   10 r   (x2)10 −r  2 x3   r =   10 r   (2r)(x20 −2r)(x−3r) F F ก F F F ก x ˈ 0 ∴r = 420 − 2r − 3r = 0 ∴ F F T4+ 1 =   10 4   (24) = 3,360 8. ก F ก 5 F F F ก ก F ˈ F ก ก ก ก F 86 F F F F ก ก ˈ 90 F F F F F ก 5 F ก ก F F 98% µw = w1x1 + w2x2 +w3x3 +w4x4 +w5x5 w1 +w2 +w3 +w4 +w5 µw = 1⋅x1 +1⋅ x2 + 1⋅x3 +1⋅ x4 +2 ⋅x5 1+ 1+1 +1+ 2 µw = (x1 +x2 +x3 +x4)+ 2x5 6 90 = 86× 4+2x5 6 x5 = 98 3
  • 7. 9. ก F ˈ F ก ˈL1 4x − 3y + 10 = 0 ˈ F F FL2 y = x2 − 8 3 x + 7 3 F ก F F F F F ก FL2 L1 L1 L2 3 y = x2 − 8 3 x + 7 3 . .. mL1 = 4 3 L1 //L2 ∴mL2 = m = 4 3 . m = m F (a, b) 4 3 = 2x − 8 3 4x − 3y + 10 = 0 4 3 = 2a − 8 3 ∴ a = 2 (a, b) F F F y = x2 − 8 3 x + 7 3 → b = 22 − 8 3 (2) + 7 3 = 1 ∴ (2, 1) F F ก F ก ก ก (a, b)L1 L2 L1 ก d = Ax1 +By1+C A2 +B2 = 4(2) −3(1)+10 42 +(−3)2 = 15 5 = 3 10. F F ก F 2 0 ∫ 6x x − 2 dx 8 F Fx ∈ [0,2] x − 2 = − (x − 2) = 2 − x = 2 0 ∫ 6x x − 2 dx 2 0 ∫ 6x(2 − x)dx = 2 0 ∫ (12x − 6x2)dx = 6x2 − 2x3 2 0 = 24 − 16 = 8 (a,b) L1 L2 d m = 4 3 m = 4 3 4
  • 8. 2 20 F F 4 11. ก F P(x) ˈ ก 3 F F ก P(x)x − 1,x − 2 x − 3 F 1 P(x) F P(5) F F ก F Fx − 4 1. 2.−3 −1 3. 0 4. 2 5. 3 1 ก F F F P(x) = a(x − 1)(x − 2)(x − 3) + 1 P(4) = 0 P(4) = a(4 − 1)(4 − 2)(4 − 3) + 1 0 = 6a + 1 → a = − 1 6 P(x) = −1 6 (x − 1)(x − 2)(x − 3) + 1 ∴ P(5) = −1 6 (4)(3)(2) + 1 = − 3 12. F z ˈ F F ก กIm(z) > 0 F F ก F F  z + 3 2    2 = − 1 4 z8 1. 2.− 3 2 − 1 2 i − 3 2 + 1 2 i 3. 4.1 2 −1 2 − 3 2 i 5. −1 2 + 3 2 i 5 =  z + 3 2    2 −1 4 =z + 3 2 1 2 i,−1 2 i z = − 3 2 + 1 2 i , − 3 2 − 1 2 i ∴ =z8   − 3 2 + 1 2 i    8 = (cis5π 6 )8 = cis20π 3 = cis(6π + 2π 3 ) = cis2π 3 = cos 2π 3 + i sin 2π 3 = − 1 2 + 3 2 i F F F Im(z) > 0 5
  • 9. 13. ก F a, b ˈ ก ab − 25a − 25b = 1575 F . . . F F F ก F F(a,b) = 5 a − b 1. 15 2. 45 3. 90 4. 210 5. 435 1 ก F = 1575a(b − 25) − 25b = 1575 + 625a(b − 25) − 25b + 625 = 2200a(b − 25) − 25(b − 25) = 2200(a − 25)(b − 25) ก (a, b) = 5 F a = 5k1 , b = 5k2 k1,k2 ∈ I+ (k1,k2) = 1 ∴ = 2200(5k1 − 25)(5k2 − 25) = 2200(5)(k1 − 5)(5)(k2 − 5) = 88(k1 − 5)(k2 − 5) 1 k1- 5 k2- 5 k1 k2 (k1, k2) = 1 88 44 22 11 1 2 4 8 93 49 27 16 6 7 9 13 × × × Fa = 5(16) = 80 , b = 5(13) = 65 a − b = 15 1 ก กk1 > k2 (a > b) F ˈ F ก F Fk1 < k2 (a < b) a = 65 , b = 80 F F F กa − b 6
  • 10. 14. ก F ˈ ก F ˂ F กu v F F ก ˈ F F ก 3 Fu v F 1 5 F Fu v F F ก F F(2u + v) ⋅ (u − v) 1. 2.−27 −19 3. 0 4. 19 5. 27 2 ก F u = 1 , v = 5 F = u × v 3 = u v sin θ 3 = (1)(5)sin θ =sin θ 3 5 F = ( Fcos θ −4 5 cos θ ก ˂ F ก )u v ∴ =(2u + v) ⋅ (u − v) 2u ⋅ u − 2u ⋅ v + v ⋅ u − v ⋅ v = 2 u 2 − u ⋅ v − v 2 u v cos θ = 2(1)2 − (1)(5) −4 5   − 52 = −19 u v 0 7
  • 11. 15. ก F H ˈ F ก ˈ 9x2 − 72x − 16y2 − 32y = 16 F E ˈ F ก H Fก F ก F E ก F F1 5 1. 2.( x−4)2 25 + (y+ 1)2 16 = 1 (x +4)2 25 + (y−1)2 16 = 1 3. 4.(x −4)2 25 + (y+1)2 20 = 1 (x +4)2 25 + (y−1)2 20 = 1 5. (x −4)2 16 + (y+1)2 9 = 1 3 ก ก HYPER = 169x2 − 72x − 16y2 − 32y =9(x2 − 8x + 42) − 16(y2 + 2y + 12) 16 + 144 − 16 = 1449(x − 4)2 − 16(y + 1)2 = 1(x −4)2 16 − (y+1)2 9 = 5c = + = 16 + 9 *** ก ก HYPER F F F F F *** F F ก HYPER F e = 1 5 → c a = 1 5 → c 5 = 1 5 → c = 5 ก a2 = b2 + c2 F 52 = b2 + ( 5 )2 → b2 = 20 ∴ ก (x −4)2 25 + (y+1)2 20 = 1 ก F (9, -1)(4, -1)(-1, -1) 55 y x ' ' 8
  • 12. 16. ก F ABC A B ˈ F cos 2A + 3 cos 2B = − 2 cos A − 2 cos B = 0 F F F ก F Fcos C 1. 2.1 5 ( 3 − 2 ) 1 5 ( 3 + 2 ) 3. 4.1 5 (2 3 − 2 ) 1 5 ( 2 + 2 3 ) 5. 1 5 (2 2 − 3 ) 3 cos A = 2 cos B (1) 2 cos2A − 1 + 3(2 cos2B − 1) = − 2 2 cos2A + 6 cos2B = 2 2( 2 cos B)2 + 6 cos2B = 2 B ˈcos2B = 1 5 → cos B = 1 5 . . . (1)cos B ,cos A = 2 5 =cos C cos [180 − (A + B)] = − cos (A + B) = − [cos A cos B − sin A sin B] = −    2 5 ⋅ 1 5 − 3 5 ⋅ 2 5    = 1 5  2 3 − 2   A 5 3 2 5 2 1 9
  • 13. 17. F x, y, z F ก ก = a2x + y + 2z = bx + y − z = c3x + 2y − 2z F F 2 −1 −2 2 2 4 a b c = 24 F x F F ก F F 1. 2. 3. 0 4.−4 −4 5 4 5 5. 4 5 ก F 2 −1 −2 2 2 4 a b c = 24 1 ก 3 : a b c 2 2 4 2 −1 −2 = − 24 2 ก ก 2 : 2 a b c 1 1 2 2 −1 −2 = − 24 → a b c 1 1 2 2 −1 −2 = − 12 ก Fdet A = det At a 1 2 b 1 −1 c 2 −2 = − 12 กก F x = a 1 2 b 1 −1 c 2 −2 2 1 2 1 1 −1 3 2 −2 = −12 −3 = 4 10
  • 14. 18. ก F A ˈ ก F i = 1, 2, 33 × 3 AXi = Bi F X1 =      1 0 5      , X2 =      1 2 5      , X3 =      1 3 1      B1 =      1 0 0      , B2 =      0 1 0      , B3 =      0 0 1      F F F ก F Fdet (A) 1. 2. 3. 4. 1−8 −1 8 1 8 5. 8 2 ก F i = 1, 2, 3AXi = Bi F AX1 = B1 → A      1 0 5      =      1 0 0      AX2 = B2 → A      1 2 5      =      0 1 0      AX3 = B3 → A      1 3 1      =      0 0 1      A      1 1 1 0 2 3 5 5 1      =      1 0 0 0 1 0 0 0 1      take det 2 F ก F =(det A) 1 1 1 0 2 3 5 5 1 det I = 1(det A)(−8) =det A −1 8 11
  • 15. 19. F S1 = {x log 1 2 (x + 1) + 2 log1 4 (x + 2) − log1 2 (9x − 3) ≤ 0} ˈS2 = {x x −10 ≤ x ≤ 10} F ก F ก F FS1 ∩ S2 1. 5 2. 6 3. 7 4. 8 5. 9 3 log1 2 (x + 1) + 2 log   1 2   2(x + 2) − log1 2 (9x − 3) ≤ 0 log1 2 (x + 1) + log1 2 (x + 2) − log1 2 (9x − 3) ≤ 0 log1 2   (x+ 1)(x +2) 9x−3   ≤ 0 → (x+1)(x+ 2) 9x −3 ≤   1 2   0 (x + 1)(x + 2) ≤ 9x − 3 → x2 + 3x + 2 ≤ 9x − 3 x2 − 6x + 5 ≥ 0 → (x − 1)(x − 5) ≥ 0 log : x + 1 > 0 x + 2 > 0 9x − 3 > 0 x > − 1 x > − 2 x > 1 3 x > 1 3 ∴ S1 = (1 3 ,1] ∪ [5,∞) ∴ S1 ∩ S2 = {1,5,6,7,8,9,10} + +- 51 513 1 12
  • 16. 20. ก ก 7 1, 2, 3, 4, 5, 6, 7 กF 7 1, 2, 3, 4, 5, 6, 7 ก F ก กF k F กก F F ก ก F ก F Fk − 1 1. 32 2. 60 3. 64 4. 120 5. 128 3 กF ก F 7 6, 7 2 6 5, 6, 7 2 ( F ก ก 7 กF F ) 5 4, 5, 6, 7 2 ( F ก ก 7, 6 กF F ) 4 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5 กF F ) 3 2, 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5, 4 กF F ) 2 1, 2, 3, 4, 5, 6, 7 2 ( F ก ก 7, 6, 5, 4, 3 กF F ) 1 1, 2, 3, 4, 5, 6, 7 1 ( ก 1 ) ∴ = 2 × 2 × 2 × 2 × 2 × 2 × 1 = 64 13
  • 17. 21. F ˈ กก F ก ก F F F ก ก 3 F F F F F F 1. F 2. 3. F 4. F 5. F 2 ก ก 3 F 3µ,Med F F FM.D.,σ = xmax −xmin xmax +xmin F F F 6xmax − xmin xmax + xmin 22. ก F F ก ก ก F ก ก 117.8 ก F 67% ก ก 126.7 ก F 9% F F F ก F ก F 125 ก F ก F F ก F F F ก Z 0.17 0.44 1 1.1 1.2 1.34 F F F 0.4554 0.1700 0.3413 0.3643 0.3849 0.41 1. 84.13 2. 86.43 3. 88.49 4. 89.25 5. 90 1 ก F 17%(A = 0.17) 41%(A = 0.41) x1= 117.8 x2= 126.7 14
  • 18. Z1 = − 0.44 Z2 = 1.34 ก ∆Z = ∆x σ → σ = ∆x ∆Z = 126.7−117.8 1.34−(−0.44) = 5 ก Z1 = x1 −µ σ → − 0.44 = 117.8 −µ 5 → µ = 120 x3 = 125 → Z3 = 125− 120 5 = 1 → A3 = 0.3413 A = 0.5 + 0.3413 = 0.8413 ˈ 84.13% 23. ก ก ก Y F (3, 9) F (1, 5) ʽ F F ก X F ก F F 1. 9 F 2. 18 F 3. 27 F 4. 36 F 5. 54 F 4 ก , =(x − h)2 4c(y − k) =(x − 3)2 4c(y − 9) F (1, 5) : =(1 − 3)2 4c(5 − 9) ∴ 4c = −1 ก =(x − 3)2 −(y − 9) y = 0 : = 9(x − 3)2 =x − 3 3,−3 ∴ x = 6, 0 ∴ ʽ F F= 2 3 (6)(9) = 36 z3= 1 y x (1,5) 2 v(3,2) 0 6 9 6 15
  • 19. 24. ก F g ˈ ˆ กF ˈ F(2,−1) ก g F (1, 4) F c ˈ F F ˆ กF f f(x) =      (cx2 + 1)g(x) 2x + 10 x ≥ 1 x < 1 F x = 1 F F F ก F Ff (2) 1. 2. 3. 0 4. 4−8 −4 5. 8 1 ก g F (2,−1) → g (2) = 0 , g(2) = − 1 ก g F (1,4) → g(1) = 4 f F x = 1 : 1( ) = 1( F ) = 12(c + 1)g(1) = 12 ∴c = 2(c + 1)(4) x = 1 f(x) = (2x2 + 1)g(x) =f (x) (2x2 + 1)g (x) + g(x)(4x) ∴ =f (2) (9)g (2) + g(2)(8) = (9)(0) + (−1)(8) = − 8 25. F an =      n 2n F F F ก F F 40 k= 1 Σ ak 1. 860 2. 1060 3. 1080 4. 1240 5. 1440 4 = 40 k= 1 Σ ak a1 + a2 + a3 + a4 + ..... + a39 + a40 = (a1 + a3 + a5 + ..... + a39) + (a2 + a4 + a6 + ..... + a40) = (1 + 3 + 5 + ......... + 39) + (4 + 8 + 12 + ......... + 80) = 20 2 (1 + 39) + 20 2 (4 + 80) = 400 + 840 = 1240 n ˈ n ˈ F 20 F 20 F 16
  • 20. 26. F a ˈ FA =    a 1 − a 1 + a −a    I =    1 0 0 1    F F ก F Fdet(A − 2 I)(A − 3 I)(A − 5 I)(A − 7 I) 1. 2.48 − 13a (a − 2 )(a − 3 )(a − 5 )(a − 7 ) 3. 17a 4. 17 5. 48 5 =A − xI    a 1 − a 1 + a −a    − x    1 0 0 1    =    a − x 1 − a 1 + a −(a + x)    =A − xI −(a − x)(a + x) − (1 + a)(1 − a) = −(a2 − x2) − (1 − a2) = − a2 + x2 − 1 + a2 = x2 − 1 ∴det(A − 2 I)(A − 3 I)(A − 5 I)(A − 7 I) = [( 2 )2 − 1][( 3 )2 − 1][( 5 )2 − 1][( 7 )2 − 1] = (1)(2)(4)(6) = 48 27. ก F ˈ ก ˈEn x2 an 2 + y2 bn 2 = 1 n = 1, 2, 3, .....an = 2 bn ≥ 0 F ˈ ก กa1 = 2 En En−1 n ≥ 2 F F F ก F F ∞ n= 1 Σ an 1. 2. 3. 4. 156 + 4 3 8 + 4 3 10 + 4 3 5. 17 2 ก F กbn = an 2 c = a2 − b2 a1 = 2 , b1 = 1 , c1 = a1 2 − b1 2 = 3 a2 = c1 = 3 , b2 = 3 2 , c2 = a2 2 − b2 2 = 3 2 a3 = c2 = 3 2 ∴ = ∞ n= 1 Σ an a1 + a2 + a3 + ..... = 2 + 3 + 3 2 + ..... r = 3 2 = 2 1 − 3 2 = 4 2− 3 = 4(2 + 3 ) = 8 + 4 3 17
  • 21. 28. F F 1. F x = 0f(x) = x x + 1 2. F x = 0f(x) = x x+1 3. F x = 0f(x) = x (x + 1) 4. F x = 0f(x) = x2 x + 1 5. F x = 0f(x) = x x 3 F f F x = 0 F F ก F F ก0− 0+ ก 1 : Ff(x) = x x + 1 x = 0− x = 0+ f(x) F F ก f(x) = x(x + 1) = x2 + x → f (x) = 2x + 1 ∴ F f(x) F x = 0f (0−) = f (0+) = 2(0) + 1 = 1 ก 2 : Ff(x) = x x+1 x = 0− x = 0+ f(x) F F ก f(x) = x x+1 → f (x) = (x+1)(1)− x(1) (x+1)2 = 1 (x+1)2 ∴ F f(x) F x = 0f (0−) = f (0+) = 1 (0 +1)2 = 1 ก 3 : f(x) = x (x + 1) : f(x) =x = 0− (−x)(x + 1) = − x2 − x =f (x) −2x − 1 → f (0−) = − 2(0) − 1 = − 1 : f(x) =x = 0+ x(x + 1) = x2 + x =f (x) 2x + 1 → f (0+) = 2(0) + 1 = 1 F ∴f(x) F F x = 0f (0−) ≠ f (0+) ก 4 : Ff(x) = x2 x + 1 x = 0− x = 0+ f(x) F F ก f(x) = x2(x + 1) = x3 + x2 → f (x) = 3x2 + 2x ∴ F f(x) F x = 0f (0−) = f (0+) = 0 ก 5 f(x) = x x :x = 0− f(x) = x(−x) = − x2 → f (x) = − 2x → f (0−) = 0 :x = 0+ f(x) = x(x) = x2 → f (x) = 2x → f (0+) = 0 F ∴ f(x) F x = 0f (0−) = f (0+) 18
  • 22. 29. ก F F ก F a1,a2,...,a91 an =      n 3 + 4n F F F ก F F 1. 63 2. 68 3. 71 4. 74 5. 76 4 ก F F F a1 = 7 , a3 = 15 , a5 = 23 , a7 = 31 , a9 = 39 , ..... a2 = 2 , a4 = 4 , a6 = 6 , a8 = 8 , a10 = 10 , a12 = 12 , a14 = 14 a16 = 16 , a18 = 18 , a20 = 20 , a22 = 22 , a24 = 24 , ..... F ก F ก 2, 4, 6, 7 , 8, 10, 12, 14, 15, 16, 18, 20, 22, 23, 24, 26, 28, 30, 31 32, 34, 36, 38, 39, 40, ....., 70, 71, 72, 74, ....., 90, 367 F a1 = x4 = 7 , a3 = x9 = 15 , a5 = x14 = 23 , a7 = x19 = 31 a9 = x24 = 39 , a11 = x29 = 47 , a13 = x34 = 55 , a15 = x39 = 63 a17 = x44 = 71 , a19 = x49 = 79 ∴Med = x46 = 74 n ˈ ก F n ˈ ก x4 x9 x14 x19 x24 x44 x46 x91 19
  • 23. 30. ก F M =       a b c d    a,b,c,d ∈ {−1,0,1}    F F ก ก F ก F ก F F ˈ F ก FM F ก F F ก F F 1. 2. 3. 4.24 81 31 81 33 81 48 81 5. 50 81 4 F A =    a b c d    a,b,c,d ∈ {−1,0,1} (a, b, c, d ก F 3 , 0, 1)n(S) = 3 × 3 × 3 × 3 = 81 −1 E : F ก F F ก Non-Singular Matrix→ ∴det A ≠ 0 :nnnn((((EEEE )))) det A = 0 det A = a b c d ad −bc = ad − bc = 0 → ad = bc F F ad bc ˈ Fa,b,c,d ∈ {−1,0,1} −1,1,0 ก ad = bc 3 ก ก 1 2 (1)(1) กad = bc = 1 → ad = 1 (−1)(−1) 2 (1)(1) กbc = 1 (−1)(−1) ∴ก 1 2 × 2 = 4 ก 2 2 กad = bc = − 1 → ad = − 1 (1)(−1) (−1)(1) 2 กbc = − 1 (1)(−1) (−1)(1) ∴ก 2 2 × 2 = 4 ก 3 5ad = bc = 0 → ad = 0 (0)(0),(0)(1),(0)(−1), (−1)(0),(1)(0) 5bc = 0 (0)(0),(0)(1),(0)(−1), (−1)(0),(1)(0) ∴ก 3 5 × 5 = 25 ∴ 3 ก 4 + 4 + 25 = 33 20
  • 24. n(E) = n(S) − n(E ) = 81 − 33 = 48 ∴ P(E) = 48 81 **** 21