NagoyaStat #12 で使用した資料です(公開に当たって当日ホワイトボードに書いた内容等を補完したものになります)。
「StanとRでベイズ統計モデリング」の第9章前半になります。
第9章のテーマは行列やベクトルを使った演算の高速化です。
---
The title of textbook is "Bayesian statistical modeling with Stan and R", and that of Chapter 9 in textbook is "advanced grammar" in English.
1) The document introduces two case studies from Rakuten Institute of Technology (RIT) on using machine learning and Rakuten market data to make predictions.
2) The first case study aimed to identify prospective users for a financial service by analyzing Ichiba purchase data and extracting users with a high probability of applying. A model was trained and evaluated against a control group, finding a 49.23% increase in click-through rate.
3) The second case study aimed to predict changes in Japan's economy by analyzing monthly sales data across different product categories on Rakuten. The model was able to predict the Composite Index with a mean absolute error of about 0.4, identifying categories like jewelry, air
NagoyaStat #12 で使用した資料です(公開に当たって当日ホワイトボードに書いた内容等を補完したものになります)。
「StanとRでベイズ統計モデリング」の第9章前半になります。
第9章のテーマは行列やベクトルを使った演算の高速化です。
---
The title of textbook is "Bayesian statistical modeling with Stan and R", and that of Chapter 9 in textbook is "advanced grammar" in English.
1) The document introduces two case studies from Rakuten Institute of Technology (RIT) on using machine learning and Rakuten market data to make predictions.
2) The first case study aimed to identify prospective users for a financial service by analyzing Ichiba purchase data and extracting users with a high probability of applying. A model was trained and evaluated against a control group, finding a 49.23% increase in click-through rate.
3) The second case study aimed to predict changes in Japan's economy by analyzing monthly sales data across different product categories on Rakuten. The model was able to predict the Composite Index with a mean absolute error of about 0.4, identifying categories like jewelry, air