ݺߣ

ݺߣShare a Scribd company logo
Soft Computing: Artificial Neural
Networks-Unsupervised Model-ART1
Dr. Baljit Singh Khehra
Professor
CSE Department
Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib-140407, Punjab, India
ART1
 Binary Adaptive Resonance Theory
 Designed to perform for binary input vector
 Unsupervised Learning
 ART1 has
 F1 units (Input and Interface units)
 F2 units (Cluster units)
 A Reset unit:
implements user Control over the degree
of similarity of patterns placed on the same
cluster
ART1
Step1. Initialize Parameters
Input Units (n) , Cluster Units (m) , L >1
Vigilance parameter ( )
Bottom-up weights (bij)
Top-down weights
Tji (0) =1
Step2. While stopping condition is not satisfied, do Steps 3-14
Step3. For each training input pattern, do Steps 4-13
Here training input pattern is s
Step 4. Set activation of all F2 units is zero
Set activation of all F1(a) units is input vector (s)
10  
nL
L
bij


1
)0(0
ART1
Step 5. Compute norm of s
Step.6 Send input signal from F1(a) to F1(b) layer
xi = si
Step.7 Calculate net input
j=1,2,3,………,m
i=1,2,3,……….,n
Find yJ such that yJ ≥ yj for j=1,2,3,………,m
Step 8. While reset is true do Steps 9-12
Step 9. The winning unit is J
Step 10. Recompute activation of F1


n
i
iss
1


n
i
ijij bxy
1
Jiii tsx 
ART1
Step 11. Calculate norm of x
Step 12. Test for reset
yJ = -1, proceed to step 8
Go to Step 13
Step13. Update weights
Step14. Test for stopping condition


n
i
ixx
1
Falseisresetthen
s
x
if 
Trueisresetthen
s
x
if 
xL
Lx
newb i
iJ


1
)(
iJi xnewt )(
ART1 Example
Step1. Initialize Parameters
Input Units (n) = 9,
Cluster Units (m) = 2, L = 2
Input Pattern is [ 1 1 1 1 0 1 1 1 1]
Step2. While stopping condition is not satisfied,
do Steps 3-14
Step3. For each training input pattern, do Steps 4-13
Here training input pattern is [ 1 1 1 1 0 1 1 1 1]
4.0





















































5
1
2
1
5
1
0
5
1
2
1
5
1
0
5
1
2
1
5
1
0
5
1
2
1
5
1
0
5
1
2
1
ijb







111111111
101010101
jit
ART1
Step 4. Set activation of all F2 units is zero
Set activation of all F1(a) units is input vector
s = [ 1 1 1 1 0 1 1 1 1]
Step 5. Compute norm of s
Step.6 Send input signal from F1(a) to F1(b) layer
xi = si
x = [ 1 1 1 1 0 1 1 1 1]
Step.7 Calculate net input
y1 = 2
y2 = 1.6
y1 > y2
J = 1
8
1
 
n
i
iss


n
i
ijij bxy
1
ART1
Step 8. While reset is true do Steps 9-12
Step 9. The winning unit is
J = 1
Step 10. Recompute activation of F1
x = [ 1 1 1 1 0 1 1 1 1] [ 1 0 1 0 1 0 1 0 1]
x = [ 1 0 1 0 0 0 1 0 1]
Step 11. Calculate norm of x
Step 12. Test for reset
Go to Step 13
Else
yJ = -1, proceed to step 8
Jiii tsx 
4
1
 
n
i
ixx

s
x
s
x
,4.05.08/4
falseisresetthen
s
x
if 
ART1
Step13. Update weights
Step14. Test for stopping condition
5
2
1
)( ii
iJ
x
xL
Lx
newb 


iJi xnewt )(





















































5
1
5
2
5
1
0
5
1
5
2
5
1
0
5
1
0
5
1
0
5
1
5
2
5
1
0
5
1
5
2
)(newbij







111111111
101000101
)(newt ji
Ann 3

More Related Content

What's hot (8)

DOCX
Data Structures and Algorithms
RAHUL957367
PDF
01 Analysis of Algorithms: Introduction
Andres Mendez-Vazquez
PPTX
Flowchart and algorithem
ehsanullah786
PPTX
Csc1100 exercise 4-design n-test
IIUM
PPT
Sorting algorithms
guest28416d
PDF
SINGLE PRECISION FLOATING POINT MULTIPLIER USING SHIFT AND ADD ALGORITHM
AM Publications
PDF
IRJET-Design and Implementation of LNS based Approximate Multiplier using Mit...
IRJET Journal
Data Structures and Algorithms
RAHUL957367
01 Analysis of Algorithms: Introduction
Andres Mendez-Vazquez
Flowchart and algorithem
ehsanullah786
Csc1100 exercise 4-design n-test
IIUM
Sorting algorithms
guest28416d
SINGLE PRECISION FLOATING POINT MULTIPLIER USING SHIFT AND ADD ALGORITHM
AM Publications
IRJET-Design and Implementation of LNS based Approximate Multiplier using Mit...
IRJET Journal

Similar to Ann 3 (20)

PPTX
Adaptive resonance theory (art)
Ashutosh Tyagi
PDF
Brief Introduction to Deep Learning + Solving XOR using ANNs
Ahmed Gad
PPTX
CS767_Lecture_04.pptx
ShujatHussainGadi
PDF
Multilayer ݺߣs
ESCOM
PDF
NN-Ch5.PDF
gnans Kgnanshek
PPTX
latest TYPES OF NEURAL NETWORKS (2).pptx
MdMahfoozAlam5
PPT
Chapter NO 5. Adaptive Resonance Theory (ART)
RamkrishnaPatil17
PPTX
Unit iii update
Indira Priyadarsini
PPT
Neural network and mlp
partha pratim deb
PPTX
Deep Learning in Recommender Systems - RecSys Summer School 2017
Balázs Hidasi
PPT
Ann ics320 part4
Hasan Suthar
PPT
Lec 3-4-5-learning
Taymoor Nazmy
PPTX
FUNCTION APPROXIMATION
ankita pandey
PPTX
Artificial neural networks - A gentle introduction to ANNS.pptx
AttaNox1
PPTX
Nimrita deep learning
Nimrita Koul
PPTX
Convolution as matrix multiplication
Edwin Efraín Jiménez Lepe
PPT
Lec10
Ahson Ahmed
PPTX
Classification using perceptron.pptx
someyamohsen3
PDF
Convolution Neural Network
Amit Kushwaha
Adaptive resonance theory (art)
Ashutosh Tyagi
Brief Introduction to Deep Learning + Solving XOR using ANNs
Ahmed Gad
CS767_Lecture_04.pptx
ShujatHussainGadi
Multilayer ݺߣs
ESCOM
NN-Ch5.PDF
gnans Kgnanshek
latest TYPES OF NEURAL NETWORKS (2).pptx
MdMahfoozAlam5
Chapter NO 5. Adaptive Resonance Theory (ART)
RamkrishnaPatil17
Unit iii update
Indira Priyadarsini
Neural network and mlp
partha pratim deb
Deep Learning in Recommender Systems - RecSys Summer School 2017
Balázs Hidasi
Ann ics320 part4
Hasan Suthar
Lec 3-4-5-learning
Taymoor Nazmy
FUNCTION APPROXIMATION
ankita pandey
Artificial neural networks - A gentle introduction to ANNS.pptx
AttaNox1
Nimrita deep learning
Nimrita Koul
Convolution as matrix multiplication
Edwin Efraín Jiménez Lepe
Classification using perceptron.pptx
someyamohsen3
Convolution Neural Network
Amit Kushwaha
Ad

More from DrBaljitSinghKhehra (6)

PPT
Ga for shortest_path
DrBaljitSinghKhehra
PPT
Deep learning
DrBaljitSinghKhehra
PPT
Back propagation
DrBaljitSinghKhehra
PPT
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
PPT
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
PPT
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
Ga for shortest_path
DrBaljitSinghKhehra
Deep learning
DrBaljitSinghKhehra
Back propagation
DrBaljitSinghKhehra
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
Artificial Neural Networks-Supervised Learning Models
DrBaljitSinghKhehra
Ad

Recently uploaded (20)

DOCX
Dissertation_Antony_Musyoka.docx.for presentation
antonykamile
PPTX
To Live Is For Christ 06 29 2025.pptx
FamilyWorshipCenterD
PPTX
AI for Empowering Women in AI
Letizia Jaccheri
PPTX
Accessibility isn't just for users. Creating engaging technical presentations...
Elizabeth McCready
PDF
SZWDL denim washing and dry washing industry
te20046
PDF
Amazon Wholesale Product Research Example
Joseph Juntilla
PPTX
organic farm Dr Shashi Jain 19.06.2018.pptx
Pratibha Chauhan
PPTX
Présentation Bruit Verdun - juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
PPTX
Présentation Bruit Sud-Ouest- juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
PDF
Rethinking Public–Private Partnerships: From Funding Gaps to Shared Goals
Francois Stepman
PPTX
Cynthia Kayle Share 5 Root Causes of Child Trafficking Around the World.pptx
Cynthia Kayle
PDF
models-of-communication reading and writing.pdf
TristanNabong
PDF
Performancesonore_sudouest_EN.pdf
Pont Samuel-De Champlain Bridge
PPTX
2025-06-29 Abraham 05 (shared slides).pptx
Dale Wells
PDF
Performancesonore_verdun_EN.pdf
Pont Samuel-De Champlain Bridge
DOC
STABILITY INDICATING METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIM...
jmkeans624
PPTX
From Hackathon to Real-World Impact: The Story of Sneh Vidhya Sahayog
shubhamsharma994585
PPTX
Ludwig van Beethoven Life and Legacy.pptx
aryansnow1304
PPTX
Soft Skills Training for Everybody.pp.pptx
Mayuri Srivastava
PPTX
Pastor Bob Stewart Acts 19 06 25 2025.pptx
FamilyWorshipCenterD
Dissertation_Antony_Musyoka.docx.for presentation
antonykamile
To Live Is For Christ 06 29 2025.pptx
FamilyWorshipCenterD
AI for Empowering Women in AI
Letizia Jaccheri
Accessibility isn't just for users. Creating engaging technical presentations...
Elizabeth McCready
SZWDL denim washing and dry washing industry
te20046
Amazon Wholesale Product Research Example
Joseph Juntilla
organic farm Dr Shashi Jain 19.06.2018.pptx
Pratibha Chauhan
Présentation Bruit Verdun - juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
Présentation Bruit Sud-Ouest- juin 2025_TG_EN_Final.pptx
Pont Samuel-De Champlain Bridge
Rethinking Public–Private Partnerships: From Funding Gaps to Shared Goals
Francois Stepman
Cynthia Kayle Share 5 Root Causes of Child Trafficking Around the World.pptx
Cynthia Kayle
models-of-communication reading and writing.pdf
TristanNabong
Performancesonore_sudouest_EN.pdf
Pont Samuel-De Champlain Bridge
2025-06-29 Abraham 05 (shared slides).pptx
Dale Wells
Performancesonore_verdun_EN.pdf
Pont Samuel-De Champlain Bridge
STABILITY INDICATING METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIM...
jmkeans624
From Hackathon to Real-World Impact: The Story of Sneh Vidhya Sahayog
shubhamsharma994585
Ludwig van Beethoven Life and Legacy.pptx
aryansnow1304
Soft Skills Training for Everybody.pp.pptx
Mayuri Srivastava
Pastor Bob Stewart Acts 19 06 25 2025.pptx
FamilyWorshipCenterD

Ann 3

  • 1. Soft Computing: Artificial Neural Networks-Unsupervised Model-ART1 Dr. Baljit Singh Khehra Professor CSE Department Baba Banda Singh Bahadur Engineering College Fatehgarh Sahib-140407, Punjab, India
  • 2. ART1  Binary Adaptive Resonance Theory  Designed to perform for binary input vector  Unsupervised Learning  ART1 has  F1 units (Input and Interface units)  F2 units (Cluster units)  A Reset unit: implements user Control over the degree of similarity of patterns placed on the same cluster
  • 3. ART1 Step1. Initialize Parameters Input Units (n) , Cluster Units (m) , L >1 Vigilance parameter ( ) Bottom-up weights (bij) Top-down weights Tji (0) =1 Step2. While stopping condition is not satisfied, do Steps 3-14 Step3. For each training input pattern, do Steps 4-13 Here training input pattern is s Step 4. Set activation of all F2 units is zero Set activation of all F1(a) units is input vector (s) 10   nL L bij   1 )0(0
  • 4. ART1 Step 5. Compute norm of s Step.6 Send input signal from F1(a) to F1(b) layer xi = si Step.7 Calculate net input j=1,2,3,………,m i=1,2,3,……….,n Find yJ such that yJ ≥ yj for j=1,2,3,………,m Step 8. While reset is true do Steps 9-12 Step 9. The winning unit is J Step 10. Recompute activation of F1   n i iss 1   n i ijij bxy 1 Jiii tsx 
  • 5. ART1 Step 11. Calculate norm of x Step 12. Test for reset yJ = -1, proceed to step 8 Go to Step 13 Step13. Update weights Step14. Test for stopping condition   n i ixx 1 Falseisresetthen s x if  Trueisresetthen s x if  xL Lx newb i iJ   1 )( iJi xnewt )(
  • 6. ART1 Example Step1. Initialize Parameters Input Units (n) = 9, Cluster Units (m) = 2, L = 2 Input Pattern is [ 1 1 1 1 0 1 1 1 1] Step2. While stopping condition is not satisfied, do Steps 3-14 Step3. For each training input pattern, do Steps 4-13 Here training input pattern is [ 1 1 1 1 0 1 1 1 1] 4.0                                                      5 1 2 1 5 1 0 5 1 2 1 5 1 0 5 1 2 1 5 1 0 5 1 2 1 5 1 0 5 1 2 1 ijb        111111111 101010101 jit
  • 7. ART1 Step 4. Set activation of all F2 units is zero Set activation of all F1(a) units is input vector s = [ 1 1 1 1 0 1 1 1 1] Step 5. Compute norm of s Step.6 Send input signal from F1(a) to F1(b) layer xi = si x = [ 1 1 1 1 0 1 1 1 1] Step.7 Calculate net input y1 = 2 y2 = 1.6 y1 > y2 J = 1 8 1   n i iss   n i ijij bxy 1
  • 8. ART1 Step 8. While reset is true do Steps 9-12 Step 9. The winning unit is J = 1 Step 10. Recompute activation of F1 x = [ 1 1 1 1 0 1 1 1 1] [ 1 0 1 0 1 0 1 0 1] x = [ 1 0 1 0 0 0 1 0 1] Step 11. Calculate norm of x Step 12. Test for reset Go to Step 13 Else yJ = -1, proceed to step 8 Jiii tsx  4 1   n i ixx  s x s x ,4.05.08/4 falseisresetthen s x if 
  • 9. ART1 Step13. Update weights Step14. Test for stopping condition 5 2 1 )( ii iJ x xL Lx newb    iJi xnewt )(                                                      5 1 5 2 5 1 0 5 1 5 2 5 1 0 5 1 0 5 1 0 5 1 5 2 5 1 0 5 1 5 2 )(newbij        111111111 101000101 )(newt ji