Breve panoramica sui Big Data, per chi ne ha solo sentito parlare ma non sa bene cosa siano.
La presentazione non 竪 pensata per un pubblico tecnico e segue questa agenda:
1. definizione di Big Data delle 3 V
2. esempi di progetti realmente effettuati
3. tecnologie
4. riflessioni varie
1) The document introduces data science and its core disciplines, including statistics, machine learning, predictive modeling, and database management.
2) It explains that data science uses scientific methods and algorithms to extract knowledge and insights from both structured and unstructured data.
3) The roles of data scientists are discussed, noting that they have skills in programming, statistics, analytics, business analysis, and machine learning.
What Is Hadoop | Hadoop Tutorial For Beginners | EdurekaEdureka!
油
( Hadoop Training: https://www.edureka.co/hadoop )
This Edureka "What is Hadoop" tutorial ( Hadoop Blog series: https://goo.gl/LFesy8 ) helps you to understand how Big Data emerged as a problem and how Hadoop solved that problem. This tutorial will be discussing about Hadoop Architecture, HDFS & it's architecture, YARN and MapReduce in detail. Below are the topics covered in this tutorial:
1) 5 Vs of Big Data
2) Problems with Big Data
3) Hadoop-as-a solution
4) What is Hadoop?
5) HDFS
6) YARN
7) MapReduce
8) Hadoop Ecosystem
This document discusses different types of data analytics including web, mobile, retail, social media, and unstructured analytics. It defines business analytics as the integration of disparate internal and external data sources to answer forward-looking business questions tied to key objectives. Big data comes from various sources like web behavior and social media, while little data refers to any data not considered big data. Successful analytics requires addressing business challenges, having a strong data foundation, implementing solutions with goals in mind, generating insights, measuring results, sharing knowledge, and innovating approaches. The future of analytics involves every company having a data strategy and using tools to augment internal data. Predictive analytics tells what will happen, while prescriptive analytics tells how to make it
In this deck from the 2018 Swiss HPC Conference, Axel Koehler from NVIDIA presents: The Convergence of HPC and Deep Learning.
"The intersection of AI and HPC is extending the reach of science and accelerating the pace of scientific innovation like never before. The technology originally developed for HPC has enabled deep learning, and deep learning is enabling many usages in science. Deep learning is also helping deliver real-time results with models that used to take days or months to simulate.油The presentation will give an overview about the latest hard- and software developments for HPC and Deep Learning from NVIDIA and will show some examples that Deep Learning can be combined with traditional large scale simulations."
Watch the video: https://wp.me/p3RLHQ-ijM
Learn more: http://nvidia.com
and
http://www.hpcadvisorycouncil.com/events/2018/swiss-workshop/agenda.php
Sign up for our insideHPC Newsletter: http://insidehpc.com/newsletter
EY + Neo4j: Why graph technology makes sense for fraud detection and customer...Neo4j
油
This document discusses how graph technology can help with fraud detection and customer 360 projects in the insurance industry. It notes that insurers today struggle with identity resolution, siloed data, and reactive policies. This leads to an inability to get a full customer view or recommend next best actions. Graph databases provide a unified customer view by linking different data sources and modeling relationships. This enables capabilities like predictive analytics, personalization, and improved fraud identification. The document outlines how to build a customer golden profile with a graph database and provides examples of insights that can be gained. It also discusses proving the value of the graph approach and making graphs a long-term, sustainable solution.
HDFS is a Java-based file system that provides scalable and reliable data storage, and it was designed to span large clusters of commodity servers. HDFS has demonstrated production scalability of up to 200 PB of storage and a single cluster of 4500 servers, supporting close to a billion files and blocks.
Data lineage and observability with Marquez - subsurface 2020Julien Le Dem
油
This document discusses Marquez, an open source metadata management system. It provides an overview of Marquez and how it can be used to track metadata in data pipelines. Specifically:
- Marquez collects and stores metadata about data sources, datasets, jobs, and runs to provide data lineage and observability.
- It has a modular framework to support data governance, data lineage, and data discovery. Metadata can be collected via REST APIs or language SDKs.
- Marquez integrates with Apache Airflow to collect task-level metadata, dependencies between DAGs, and link tasks to code versions. This enables understanding of operational dependencies and troubleshooting.
- The Marquez community aims to build an open
Selling MDM to Leadership: Defining the WhyProfisee
油
This document discusses defining the business justification or "why" for a master data management (MDM) program. It covers:
1. Defining the business perspective on why undertake an MDM program by focusing on problems to solve rather than technical details. This includes categorizing and prioritizing business benefits.
2. Prioritizing where to start the program by focusing efforts on solving business problems.
3. The next part will cover calculating the total cost of ownership and "rightsizing" the initial scope of the MDM program, including which data domains, functions, or organizations to include.
際際滷s: Taking an Active Approach to Data GovernanceDATAVERSITY
油
A Look at How Riot Games Implemented Non-Invasive Data Governance
Riot Games created and runs League of Legends, the worlds most-played PC game and most viewed eSport and is now transforming to become a multi-title publisher. To keep pace with this transformation and support a growing player base of millions, Riot Games is taking a page from Bob Seiners book, Non-Invasive Data Governance: The Path of Least Resistance and Greatest Success and leveraging the Alation Data Catalog to help guide accurate, well-governed analysis.
Bob Seiner will join Riot Games Chris Kudelka, Technical Product Manager, and Michael Leslie, Senior Data Governance Architect, and Alations John Wills, VP of Professional Service, for an inside look at Data Governance at one of the worlds leading gaming companies.
Join this webinar to learn:
How Riot Games is implementing Non-Invasive Data Governance
How this new approach to Data Governance helps to drive the business
How the Alation Data Catalog helps Riot Games create the foundation for guiding accurate, well-governed data use
The presentation covers following topics: 1) Hadoop Introduction 2) Hadoop nodes and daemons 3) Architecture 4) Hadoop best features 5) Hadoop characteristics. For more further knowledge of Hadoop refer the link: http://data-flair.training/blogs/hadoop-tutorial-for-beginners/
Building a Neural Machine Translation System From ScratchNatasha Latysheva
油
Human languages are complex, diverse and riddled with exceptions translating between different languages is therefore a highly challenging technical problem. Deep learning approaches have proved powerful in modelling the intricacies of language, and have surpassed all statistics-based methods for automated translation. This session begins with an introduction to the problem of machine translation and discusses the two dominant neural architectures for solving it recurrent neural networks and transformers. A practical overview of the workflow involved in training, optimising and adapting a competitive neural machine translation system is provided. Attendees will gain an understanding of the internal workings and capabilities of state-of-the-art systems for automatic translation, as well as an appreciation of the key challenges and open problems in the field.
Learn how to start a data governance initiative to ensure developing successful frameworks by leveraging the best practices outlined in this inforgraphic.
Data Lake or Data Warehouse? Data Cleaning or Data Wrangling? How to Ensure t...Anastasija Nikiforova
油
This presentation was delivered as part of the Data Science Seminar titled When, Why and How? The Importance of Business Intelligence organized by the Institute of Computer Science (University of Tartu) in cooperation with Swedbank.
In this presentation I talked about:
*Data warehouse vs. data lake what are they and what is the difference between them? (structured vs unstructured, static vs dynamic (real-time data), schema-on-write vs schema on-read, ETL vs ELT) with further elaboration on What are their goals and purposes? What is their target audience? What are their pros and cons?
*Is the Data warehouse the only data repository suitable for BI? no, (today) data lakes can also be suitable. And even more, both are considered the key to a single version of the truth. Although, if descriptive BI is the only purpose, it might still be better to stay within data warehouse. But, if you want to either have predictive BI or use your data for ML (or do not have a specific idea on how you want to use the data, but want to be able to explore your data effectively and efficiently), you know that a data warehouse might not be the best option.
*So, the data lake will save my resources a lot, because I do not have to worry about how to store /allocate the data just put it in one storage and voila?! no, in this case your data lake will turn into a data swamp! And you are forgetting about the data quality you should (must!) be thinking of!
*But how do you prevent the data lake from becoming a data swamp? in short and simple terms proper data governance & metadata management is the answer (but not as easy as it sounds do not forget about your data engineer and be friendly with him [always literally always :D) and also think about the culture in your organization.
*So, the use of a data warehouse is the key to high quality data? no, it is not! Having ETL do not guarantee the quality of your data (transform&load is not data quality management). Think about data quality regardless of the repository!
*Are data warehouses and data lakes the only options to consider or are we missing something? true! Data lakehouse!
*If a data lakehouse is a combination of benefits of a data warehouse and data lake, is it a silver bullet? no, it is not! This is another option (relatively immature) to consider that may be the best bit for you, but not a panacea. Dealing with data is not easy (still)
In addition, in this talk I also briefly introduced the ongoing research into the integration of the data lake as a data repository and data wrangling seeking for an increased data quality in IS. In short, this is somewhat like an improved data lakehouse, where we emphasize the need of data governance and data wrangling to be integrated to really get the benefits that the data lakehouses promise (although we still call it a data lake, since a data lakehouse is nut sufficiently mature concept with different definitions of it).
Data Governance Powerpoint Presentation 際際滷s際際滷Team
油
This document discusses the need for and benefits of data governance, as well as common challenges companies face with data governance. It outlines roles and responsibilities in a data governance program, ways to establish a data governance program, and provides a data governance framework and roadmap for improvement. Specific topics covered include ensuring data consistency, guiding analytical activities, saving money, and providing clarity on conflicting data. Common challenges include lack of communication, organizational issues, cost, lack of data and application integration, and issues with data quality and migration. The document compares manual and automated approaches to data governance.
Presentation at Data ScienceTech Institute campuses, Paris and Nice, May 2016 , including Intro, Data Science History and Terms; 10 Real-World Data Science Lessons; Data Science Now: Polls & Trends; Data Science Roles; Data Science Job Trends; and Data Science Future
Summary introduction to data engineeringNovita Sari
油
Data engineering involves designing, building, and maintaining data warehouses to transform raw data into queryable forms that enable analytics. A core task of data engineers is Extract, Transform, and Load (ETL) processes - extracting data from sources, transforming it through processes like filtering and aggregation, and loading it into destinations. Data engineers help divide systems into transactional (OLTP) and analytical (OLAP) databases, with OLTP providing source data to data warehouses analyzed through OLAP systems. While similar, data engineers focus more on infrastructure and ETL processes, while data scientists focus more on analysis, modeling, and insights.
This document provides an introduction to data science and analytics. It discusses why data science jobs are in high demand, what skills are needed for these roles, and common types of analytics including descriptive, predictive, and prescriptive. It also covers topics like machine learning, big data, structured vs unstructured data, and examples of companies that utilize data and analytics like Amazon and Facebook. The document is intended to explain key concepts in data science and why attending a talk on this topic would be beneficial.
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...Simplilearn
油
This presentation about Big Data will help you understand how Big Data evolved over the years, what is Big Data, applications of Big Data, a case study on Big Data, 3 important challenges of Big Data and how Hadoop solved those challenges. The case study talks about Google File System (GFS), where youll learn how Google solved its problem of storing increasing user data in early 2000. Well also look at the history of Hadoop, its ecosystem and a brief introduction to HDFS which is a distributed file system designed to store large volumes of data and MapReduce which allows parallel processing of data. In the end, well run through some basic HDFS commands and see how to perform wordcount using MapReduce. Now, let us get started and understand Big Data in detail.
Below topics are explained in this Big Data presentation for beginners:
1. Evolution of Big Data
2. Why Big Data?
3. What is Big Data?
4. Challenges of Big Data
5. Hadoop as a solution
6. MapReduce algorithm
7. Demo on HDFS and MapReduce
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
Who is a Data Scientist? | How to become a Data Scientist? | Data Science Cou...Edureka!
油
** Data Scientist Masters' Program: https://www.edureka.co/masters-program/data-scientist-certification **
This Edureka PPT on "Who is a Data Scientist" will help you understand what a data scientist does, their roles and responsibilities, and what the data science profile is all about. You will also get a glimpse of what kind of salary packages and career opportunities the data science domain offers.
Below topics are covered in this PPT:
Who is a Data Scientist?
What is Data Science?
Who can take up Data Science?
How to become a Data Scientist?
Data Scientist Skills
Data Scientist Roles & Responsibilities
Data Scientist Salary
Follow us to never miss an update in the future.
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
This document provides an overview of big data analytics. It discusses challenges of big data like increased storage needs and handling varied data formats. The document introduces Hadoop and Spark as approaches for processing large, unstructured data at scale. Descriptive and predictive analytics are defined, and a sample use case of sentiment analysis on Twitter data is presented, demonstrating data collection, modeling, and scoring workflows. Finally, the author's skills in areas like Java, Python, SQL, Hadoop, and predictive analytics tools are outlined.
I've shown you in this ppt, the difference between Data and Big Data. How Big Data is generated, Opportunities with Big Data, Problem occurred in Big Data, solution of that problem, Big Data tools, What is Data Science & how it's related with the Big Data, Data Scientist vs Data Analyst. At last, one Real-life scenario where Big data, data scientists, and data analysts work together.
Can we use data to train Machine Learning models, perform statistical analysis, yet without putting private data on risk? There are tools and techniques such as Federated Learning, Differential Privacy or Homomorphic Encryption enabling safer work on the data.
This video will give you an idea about Data science for beginners.
Also explain Data Science Process , Data Science Job Roles , Stages in Data Science Project
Gartner: Seven Building Blocks of Master Data ManagementGartner
油
Gartner will further examine key trends shaping the future MDM market during the Gartner MDM Summit 2011, 2-3 February in London. More information at www.europe.gartner.com/mdm.
Building Robust ETL Pipelines with Apache SparkDatabricks
油
Stable and robust ETL pipelines are a critical component of the data infrastructure of modern enterprises. ETL pipelines ingest data from a variety of sources and must handle incorrect, incomplete or inconsistent records and produce curated, consistent data for consumption by downstream applications. In this talk, well take a deep dive into the technical details of how Apache Spark reads data and discuss how Spark 2.2s flexible APIs; support for a wide variety of datasources; state of art Tungsten execution engine; and the ability to provide diagnostic feedback to users, making it a robust framework for building end-to-end ETL pipelines.
Data stage interview questions and answers|DataStage FAQSBigClasses.com
油
The document contains questions and answers about Ascential DataStage. It discusses the differences between DataStage and Informatica, the components of DataStage, system variables, enhancements in version 7.5 compared to 7.0, definitions of DataStage, merges, sequencers, version control, active and passive stages, features of DataStage, data aggregation, how the IPC stage works, stage variables, container types, where the DataStage repository is stored, staging variables, generating sequence numbers, differences between server and parallel jobs, and differences between account and directory options.
Descrizione delle principali tecnologie abilitanti alla gestione dei Big Data, con particolare attenzione allecosistema che gravita intorno al framework Hadoop di Apache.
Descrizione delle principali tecnologie abilitanti alla gestione dei Big Data, con particolare attenzione allecosistema che gravita intorno al framework Hadoop di Apache.
Selling MDM to Leadership: Defining the WhyProfisee
油
This document discusses defining the business justification or "why" for a master data management (MDM) program. It covers:
1. Defining the business perspective on why undertake an MDM program by focusing on problems to solve rather than technical details. This includes categorizing and prioritizing business benefits.
2. Prioritizing where to start the program by focusing efforts on solving business problems.
3. The next part will cover calculating the total cost of ownership and "rightsizing" the initial scope of the MDM program, including which data domains, functions, or organizations to include.
際際滷s: Taking an Active Approach to Data GovernanceDATAVERSITY
油
A Look at How Riot Games Implemented Non-Invasive Data Governance
Riot Games created and runs League of Legends, the worlds most-played PC game and most viewed eSport and is now transforming to become a multi-title publisher. To keep pace with this transformation and support a growing player base of millions, Riot Games is taking a page from Bob Seiners book, Non-Invasive Data Governance: The Path of Least Resistance and Greatest Success and leveraging the Alation Data Catalog to help guide accurate, well-governed analysis.
Bob Seiner will join Riot Games Chris Kudelka, Technical Product Manager, and Michael Leslie, Senior Data Governance Architect, and Alations John Wills, VP of Professional Service, for an inside look at Data Governance at one of the worlds leading gaming companies.
Join this webinar to learn:
How Riot Games is implementing Non-Invasive Data Governance
How this new approach to Data Governance helps to drive the business
How the Alation Data Catalog helps Riot Games create the foundation for guiding accurate, well-governed data use
The presentation covers following topics: 1) Hadoop Introduction 2) Hadoop nodes and daemons 3) Architecture 4) Hadoop best features 5) Hadoop characteristics. For more further knowledge of Hadoop refer the link: http://data-flair.training/blogs/hadoop-tutorial-for-beginners/
Building a Neural Machine Translation System From ScratchNatasha Latysheva
油
Human languages are complex, diverse and riddled with exceptions translating between different languages is therefore a highly challenging technical problem. Deep learning approaches have proved powerful in modelling the intricacies of language, and have surpassed all statistics-based methods for automated translation. This session begins with an introduction to the problem of machine translation and discusses the two dominant neural architectures for solving it recurrent neural networks and transformers. A practical overview of the workflow involved in training, optimising and adapting a competitive neural machine translation system is provided. Attendees will gain an understanding of the internal workings and capabilities of state-of-the-art systems for automatic translation, as well as an appreciation of the key challenges and open problems in the field.
Learn how to start a data governance initiative to ensure developing successful frameworks by leveraging the best practices outlined in this inforgraphic.
Data Lake or Data Warehouse? Data Cleaning or Data Wrangling? How to Ensure t...Anastasija Nikiforova
油
This presentation was delivered as part of the Data Science Seminar titled When, Why and How? The Importance of Business Intelligence organized by the Institute of Computer Science (University of Tartu) in cooperation with Swedbank.
In this presentation I talked about:
*Data warehouse vs. data lake what are they and what is the difference between them? (structured vs unstructured, static vs dynamic (real-time data), schema-on-write vs schema on-read, ETL vs ELT) with further elaboration on What are their goals and purposes? What is their target audience? What are their pros and cons?
*Is the Data warehouse the only data repository suitable for BI? no, (today) data lakes can also be suitable. And even more, both are considered the key to a single version of the truth. Although, if descriptive BI is the only purpose, it might still be better to stay within data warehouse. But, if you want to either have predictive BI or use your data for ML (or do not have a specific idea on how you want to use the data, but want to be able to explore your data effectively and efficiently), you know that a data warehouse might not be the best option.
*So, the data lake will save my resources a lot, because I do not have to worry about how to store /allocate the data just put it in one storage and voila?! no, in this case your data lake will turn into a data swamp! And you are forgetting about the data quality you should (must!) be thinking of!
*But how do you prevent the data lake from becoming a data swamp? in short and simple terms proper data governance & metadata management is the answer (but not as easy as it sounds do not forget about your data engineer and be friendly with him [always literally always :D) and also think about the culture in your organization.
*So, the use of a data warehouse is the key to high quality data? no, it is not! Having ETL do not guarantee the quality of your data (transform&load is not data quality management). Think about data quality regardless of the repository!
*Are data warehouses and data lakes the only options to consider or are we missing something? true! Data lakehouse!
*If a data lakehouse is a combination of benefits of a data warehouse and data lake, is it a silver bullet? no, it is not! This is another option (relatively immature) to consider that may be the best bit for you, but not a panacea. Dealing with data is not easy (still)
In addition, in this talk I also briefly introduced the ongoing research into the integration of the data lake as a data repository and data wrangling seeking for an increased data quality in IS. In short, this is somewhat like an improved data lakehouse, where we emphasize the need of data governance and data wrangling to be integrated to really get the benefits that the data lakehouses promise (although we still call it a data lake, since a data lakehouse is nut sufficiently mature concept with different definitions of it).
Data Governance Powerpoint Presentation 際際滷s際際滷Team
油
This document discusses the need for and benefits of data governance, as well as common challenges companies face with data governance. It outlines roles and responsibilities in a data governance program, ways to establish a data governance program, and provides a data governance framework and roadmap for improvement. Specific topics covered include ensuring data consistency, guiding analytical activities, saving money, and providing clarity on conflicting data. Common challenges include lack of communication, organizational issues, cost, lack of data and application integration, and issues with data quality and migration. The document compares manual and automated approaches to data governance.
Presentation at Data ScienceTech Institute campuses, Paris and Nice, May 2016 , including Intro, Data Science History and Terms; 10 Real-World Data Science Lessons; Data Science Now: Polls & Trends; Data Science Roles; Data Science Job Trends; and Data Science Future
Summary introduction to data engineeringNovita Sari
油
Data engineering involves designing, building, and maintaining data warehouses to transform raw data into queryable forms that enable analytics. A core task of data engineers is Extract, Transform, and Load (ETL) processes - extracting data from sources, transforming it through processes like filtering and aggregation, and loading it into destinations. Data engineers help divide systems into transactional (OLTP) and analytical (OLAP) databases, with OLTP providing source data to data warehouses analyzed through OLAP systems. While similar, data engineers focus more on infrastructure and ETL processes, while data scientists focus more on analysis, modeling, and insights.
This document provides an introduction to data science and analytics. It discusses why data science jobs are in high demand, what skills are needed for these roles, and common types of analytics including descriptive, predictive, and prescriptive. It also covers topics like machine learning, big data, structured vs unstructured data, and examples of companies that utilize data and analytics like Amazon and Facebook. The document is intended to explain key concepts in data science and why attending a talk on this topic would be beneficial.
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...Simplilearn
油
This presentation about Big Data will help you understand how Big Data evolved over the years, what is Big Data, applications of Big Data, a case study on Big Data, 3 important challenges of Big Data and how Hadoop solved those challenges. The case study talks about Google File System (GFS), where youll learn how Google solved its problem of storing increasing user data in early 2000. Well also look at the history of Hadoop, its ecosystem and a brief introduction to HDFS which is a distributed file system designed to store large volumes of data and MapReduce which allows parallel processing of data. In the end, well run through some basic HDFS commands and see how to perform wordcount using MapReduce. Now, let us get started and understand Big Data in detail.
Below topics are explained in this Big Data presentation for beginners:
1. Evolution of Big Data
2. Why Big Data?
3. What is Big Data?
4. Challenges of Big Data
5. Hadoop as a solution
6. MapReduce algorithm
7. Demo on HDFS and MapReduce
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
Who is a Data Scientist? | How to become a Data Scientist? | Data Science Cou...Edureka!
油
** Data Scientist Masters' Program: https://www.edureka.co/masters-program/data-scientist-certification **
This Edureka PPT on "Who is a Data Scientist" will help you understand what a data scientist does, their roles and responsibilities, and what the data science profile is all about. You will also get a glimpse of what kind of salary packages and career opportunities the data science domain offers.
Below topics are covered in this PPT:
Who is a Data Scientist?
What is Data Science?
Who can take up Data Science?
How to become a Data Scientist?
Data Scientist Skills
Data Scientist Roles & Responsibilities
Data Scientist Salary
Follow us to never miss an update in the future.
Instagram: https://www.instagram.com/edureka_learning/
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
This document provides an overview of big data analytics. It discusses challenges of big data like increased storage needs and handling varied data formats. The document introduces Hadoop and Spark as approaches for processing large, unstructured data at scale. Descriptive and predictive analytics are defined, and a sample use case of sentiment analysis on Twitter data is presented, demonstrating data collection, modeling, and scoring workflows. Finally, the author's skills in areas like Java, Python, SQL, Hadoop, and predictive analytics tools are outlined.
I've shown you in this ppt, the difference between Data and Big Data. How Big Data is generated, Opportunities with Big Data, Problem occurred in Big Data, solution of that problem, Big Data tools, What is Data Science & how it's related with the Big Data, Data Scientist vs Data Analyst. At last, one Real-life scenario where Big data, data scientists, and data analysts work together.
Can we use data to train Machine Learning models, perform statistical analysis, yet without putting private data on risk? There are tools and techniques such as Federated Learning, Differential Privacy or Homomorphic Encryption enabling safer work on the data.
This video will give you an idea about Data science for beginners.
Also explain Data Science Process , Data Science Job Roles , Stages in Data Science Project
Gartner: Seven Building Blocks of Master Data ManagementGartner
油
Gartner will further examine key trends shaping the future MDM market during the Gartner MDM Summit 2011, 2-3 February in London. More information at www.europe.gartner.com/mdm.
Building Robust ETL Pipelines with Apache SparkDatabricks
油
Stable and robust ETL pipelines are a critical component of the data infrastructure of modern enterprises. ETL pipelines ingest data from a variety of sources and must handle incorrect, incomplete or inconsistent records and produce curated, consistent data for consumption by downstream applications. In this talk, well take a deep dive into the technical details of how Apache Spark reads data and discuss how Spark 2.2s flexible APIs; support for a wide variety of datasources; state of art Tungsten execution engine; and the ability to provide diagnostic feedback to users, making it a robust framework for building end-to-end ETL pipelines.
Data stage interview questions and answers|DataStage FAQSBigClasses.com
油
The document contains questions and answers about Ascential DataStage. It discusses the differences between DataStage and Informatica, the components of DataStage, system variables, enhancements in version 7.5 compared to 7.0, definitions of DataStage, merges, sequencers, version control, active and passive stages, features of DataStage, data aggregation, how the IPC stage works, stage variables, container types, where the DataStage repository is stored, staging variables, generating sequence numbers, differences between server and parallel jobs, and differences between account and directory options.
Descrizione delle principali tecnologie abilitanti alla gestione dei Big Data, con particolare attenzione allecosistema che gravita intorno al framework Hadoop di Apache.
Descrizione delle principali tecnologie abilitanti alla gestione dei Big Data, con particolare attenzione allecosistema che gravita intorno al framework Hadoop di Apache.
Business Intelligence e Business Analytics sono termini che ricorrono ormai quotidianemente. Cosa significano? Che valore portano in una azienda? Come si crea una soluzione di Business Intelligece e di Business Analytics? Che strumenti mette a disposizione la piattaforma Microsoft? In questa sessione andremo ad introdurre tutti gli attori, gli strumenti e le tecnologie che concorrono a realizzare tali soluzioni, vendendone alcune "dal vivo" per capire come si usano ed il grande valore aggiunto che, in una societ sempre pi湛 affamata di informazioni, ma ricca solo di dati, possono portare.
Come funzionano i Retrieval-Augmented Generators (RAG) e quanto i database vettoriali sono fondamentali per poter memorizzare e utilizzare le sorgenti dati aziendali e personali?
Introduzione ai Big Data e alla scienza dei dati - Big DataVincenzo Manzoni
油
Lezione 5 del corso di analisi dati tenuto al Palazzolo Digital Hub (Palazzolo sull'Oglio, Brescia) nel 2014. In questa quinta e ultima lezione si introducono le tecnologie dei Big Data.
La presentazione 竪 stata realizzato per un seminario da tenere durante il corso di Sistemi Operativi Avanzati. Durante la presentazione si 竪 discusso di Hadoop partendo dalle origini fino ad arrivare a parlare di qualche dettaglio pi湛 approfondito. Non si 竪 scelto di entrare troppo nel dettaglio in quanto in seguito alla presentazione si 竪 tenuta una demo sull'utilizzo di Hadoop su un cluster da noi allestito all'interno dell'universit.
Webinar - https://redis.com/webinars-on-demand/redis-non-solo-cache/
Redis 竪 il sistema di caching pi湛 utilizzato e conosciuto, sia a livello community, che in ambito enterprise.
Tuttavia i suoi utilizzi non si limitano alla sola cache.
In questo webinar, vedremo come disegnare architetture per sistemi di code, messaging e event-stream.
Inoltre, parte della presentazione sar dedicata ad una demo che evidenzia step-by-step come implementare Redis per le event-driven-architecture, prendendo spunto da un caso d'uso specifico.
Trovare ci嘆 che serve nella confusione: comprendere i Big Data con l'analisi AWSAmazon Web Services
油
Ai giorno nostri, le informazioni sono una risorsa che deve ancora essere esplorata. Con levoluzione dei social media e della tecnologia, la raccolta di dati sta crescendo costantemente, raddoppiando ogni due anni poich辿 viene creato un numero sempre maggiore di flussi di dati. Lutente di Internet medio nel 2017 generava 1,5 GB di dati al giorno, un numero che raddoppia ogni 18 mesi. Un veicolo autonomo pu嘆 generare da solo 4 TB al giorno. Ogni stabilimento di produzione "smart" genera 1PB al giorno. Tuttavia, il potenziale di utilizzo di questa abbondanza di dati deve ancora concretizzarsi, poich辿 sempre pi湛 compagnie e tecnologie di intelligenza artificiale stanno usando questi dati per fare scoperte e influenzare decisioni chiave. In questa sessione esamineremo lo stato attuale dei Big Data all'interno di AWS e analizzeremo in profondit gli ultimi trend in materia di Big Data, oltre che alcuni casi d'uso industriale. Scopriremo la gamma di servizi AWS per i dati gestiti che permettono ai clienti di concentrarsi sul rendere utili i dati, tra cui Amazon Aurora, RDS, DynamoDB, Redshift, Spectrum, ElastiCache, Kinesis, EMR, Elasticsearch Service e Gluehow. In questa sessione parleremo di questi servizi, mostrando come vengono utilizzati oggi dai nostri clienti e condivideremo la nostra visione per linnovazione.
Speaker: Giorgio Nobile, Solutions Architect, AWS
Db2 11.1: l'evoluzione del Database secondo IBMJ端rgen Ambrosi
油
La gestione dei dati 竪 indubbiamente un segmento chiave per la strategia IBM dei prossimi anni insieme con le tematiche Cognitive e Cloud. In tale ambito la gestione nelle basi dati 竪 soggetta ad una evoluzione significativa verso la convergenza degli ambienti Analitici e Transazionali cosi da portare nei prossimi mesi ad una significativa semplificazione del disegno architetturale. A differenza dei tipici ambienti di business ove i processi transazionali ed analitici sono basati su distinte architetture, l'hybrid transactional analytical processin (HTAP) consentir di eseguire analisi e transazioni sullo stesso Database senza impattare le prestazioni di tali ambienti. L'obiettivo di tale disegno strategico 竪 abilitare i nostri clienti ad estrarre pi湛 valore dai propri dati, fornendo strumenti di analisi dati real-time nel punto esatto di generazione dei dati stessi.
Apache Hadoop HDFS Re-documentation taking into account both the source code of both the existing documentation available to https://hadoop.apache.org/ site. They were identified known software patterns that exist between NameNode and DataNode for the distributed file system management.
Interfacce applicative al Sistema di Catalogazione del progetto MESSIAHCostantino Landino
油
Progettazione e sviluppo dellinterfaccia di consultazione del sistema di catalogazione.
Concept Web 2.0
Interoperabilit del sistema di catalogazione con il Portale Italiano della Cultura (PICO) del Ministero dei Beni Culturali.
Framework di interoperabilit basata su standard OAI-PMH
Connettivit basata su Web Services
Implementazione di Profili Applicativi su Metadati Dublin Core
Interrogazione di Ontologie dei beni culturali
Compatibilit verso standard descrittivi catalografici, geografici, documentali (ICCD, CIDOC, EXIF, DC,..)
2. Cosa 竪 Big Data
La gestione dei dati pu嘆 comportare query su dati strutturati allinterno di database di
grandi dimensioni, oppure ricerche su file system distribuiti od infine operazioni di
manipolazione, visualizzazione, trasferimento e cancellazione di file e directory
distribuite su pi湛 server.
Lanalisi computazionale comporta lo sviluppo di metodi ed algoritmi scalabili per la
gestione e l'analisi di Big Data. Per scalabilit, intendiamo metodi che rimangono
veloci, flessibili ed efficienti anche quando la dimensione dell'insieme di dati cresce.
L'analisi dei dati e la modellazione pu嘆 comportare la riduzione dimensionale, la
suddivisione (clustering), la classificazione (ranking), la previsione e la possibilit di
future estrazioni.
La Visualizzazione pu嘆 coinvolgere modalit grafiche che forniscono informazioni su
grandi quantit di dati, ricchi di informazioni visive con riepiloghi dei risultati, dove
lanalisi visuale talvolta 竪 il momento stesso in cui i dati vengono valutati.
3. Le 3V variet, velocit, volume
Variet: i dati possono essere strutturati e non strutturati, provenienti da sorgenti
interne, esterna o pubbliche
Velocit: di generazione, di acquisizione, di processamento e gestione
Volume: la quantit dei dati prodotti
Da valutare anche
Complessit: intesa come differenti formati, diverse strutture e diverse sorgenti di
provenienza.
Valore: costo del dato, sia la produzione, limmagazzinamento e talvolta lacquisto.
La veridicit del dato: 竪 importante chi certifica il dato.
Il BIG DATA di oggi sar il LITTLE DATA di domani (tutto dipende dalla capacit
computazionale a disposizione)
4. Big Data Analytics
Analitico : 竪 la scoperta di modelli significativi allinterno dei dati (meangiful
pattern)
Le analisi analitiche possono portare a riconoscere modelli di dati che possono
essere utili per predire eventi futuri oppure spiegare eventi passati
ad esempio lincrocio di banche dati fiscali 竪 servito a rintracciare comportamenti
fraudolenti
Invece lanalisi dei comportamenti utente su un sevizio di WEB-TV o IP-TV, serve
a predire le loro abitudine televisive
Per approfondire:
http://stattrak.amstat.org/2014/07/01/bigdatasets/
6. Come affrontare BIG DATA
Lesplosione della produzione ed immagazzinamento di dati che si 竪 avuto negli
ultimi venti anni ha portato allo sviluppo di molteplici metodologie, algoritmi e
tecnologie per affrontare queste problematiche
Big data analytics: lutilizzo di algoritmi matematici, statistiche e machine learning
(apprendimento evolutivo di sistemi computazionali) per analizzare dati prodotti
sempre con maggiore velocit, variet, volume e complessit
Big models: sviluppo di nuove teorie e metodi che si basano su modelli finalizzati
allutilizzo ed interpretazione del dato
New Insights: provvedere a ridurre le differenze tra teoria e pratica fornendo
soluzioni che offrono un modello collaborativo tra organizzazioni interconnesse e
multidisciplinari
7. GESTIRE BIG DATA CON HADOOP
SQL, HADOOP e MAP REDUCE sono tre strumenti comuni per gestire grandi
quantit di dati
HADOOP si compone di diversi tool
HDFS (HADDOP DISTRIBUTED FILE SYSTEM) 竪 un file system distribuito su cluster
o su cloud
HADOOP MAP REDUCE 竪 un pattern per analizzare dati in ambienti cloud
APACHE PIG 竪 un framework costruito in ambiente HADOOP (per scherzare si
pu嘆 dire che come un maiale mangia dati e produce report e non si butta via
niente)
APACHE SPARK 竪 un motore di ricerca per processare dati distribuiti in larga scala
8. Apache Hadoop
Apache Hadoop 竪 un framework che consente l'elaborazione distribuita di grandi
insiemi di dati attraverso cluster di servers, oppure sui servizi di cloud computing,
come Amazon Elastic Compute Cloud (EC2). Questo 竪 possibile attraverso
lutilizzo di modelli di programmazione semplici. stato progettato per scalare
da singolo server a migliaia di macchine distribuite, ognuna delle quali offre
capacit di calcolo e di immagazzinamento. Rileva e gestisce gli errori a livello di
strato applicativo.
I suoi principali componenti sono
HDFS
MAP REDUCE
9. Confronto MAP REDUCE - SQL
HADOOP pu嘆 gestire sia dati strutturati che non strutturati
Se lavori con dati strutturati le due tecnologie sono complementari, in quanto
SQL si pu嘆 utilizzare su HADOOP come motore di ricerca
Mentre HADOOP lavora su cluster esistenti (ad esempio raccogliendo file di log
da batterie di server) per avere un RDBMS relazionale devi comprare un
Hardware apposito
Hadoop utilizza il principio key-value invece della relazione fra tabelle
SQL 竪 un linguaggio dichiarativo di alto livello mentre MAP REDUCE si basa su
linguaggi funzionali
10. Come funziona HDFS
Blocchi: un file in ingresso viene suddiviso in blocchi e salvato su pi湛 nodi cluster
Ogni blocco 竪 scritto una solo volta e pu嘆 essere processato attraverso MAP
REDUCE framework
I dati sono automaticamente replicati in caso di problemi
I nodi si dividono in nodi nome e nodi data
Sui nodi nome 竪 annotato a che file appartiene e dove 竪 salvato il blocco
Sui nodi data sono salvati i blocchi
11. Lecosistema del BIG DATA
I BIG DATA presentano diverse framework, librerie, strumenti e piattaforme con cui
poter operare
Frameworks: Hadoop Ecosystem, Apache Spark, Apache Storm, Apache Pig,
Facebook Presto
Patterns: Map Reduce, Actor Model, Data Pipeline
Piattoforme: Cloudera, Pivotal, Amazon Redshift, Google Compute Engine,
Elastichsearch
Tra questi sottolineiamo
Apache Mahout: una libreria per machine learning e data mining
Apache Pig: un linguaggio di alto livello ed un framework per lanalisi di flussi dati e
calcolo parallelo
Apache Spark: un motore di ricerca veloce per Hadoop. Spark fornisce un semplice
modello di programmazione che supporta diverse tipologie di applicazioni tra cui ETL
(Extract, Transform, Load), machine learning, stream processing e calcolo di grafici.
12. DATA SCHEMA
I dati possono essere acquisiti in vari formati strutturati,
non strutturati, testo, binari, .
Hadoop utilizza una nuova gestione del dato chiamato
schema: lo schema 竪 un insieme di istruzioni o un
template che a partire dal dato immagazzinato tira fuori
un risultato da mostrare allutente finale o da sottoporre
a nuove trasformazioni
Rispetto allimmagazzinamento relazionale il dato viene
salvato una sola volta e quello che cambia 竪 la
visualizzazione che ne viene prodotta verso lutente
finale
Schema possono utilizzare molti modelli computazionali
come ad esempio le reti neurali, la logica fuzzy, ..
13. Il modello MAP REDUCE (map reduce
pattern)
Si compone di tre fasi
MAPPA (Map)
Rimescola (Shuffle)
Riduci (Reduce)
Nel video della pagina seguente questi fasi sono presentate per un algoritmo che
calcolo quante volte un anno 竪 presente in un file immagazzinato in HDFS. Il file
竪 diviso in pi湛 blocchi, ognuno salvato su un differente nodo.
Si vuole sapere quante volte ad esempio il 2002 竪 citato
15. Apache PIG
Apache PIG si basa su HDFS e Map Reduce
Pu嘆 processare dati in ogni formato tabellare, tab separetd, formati nativi. Possono
essere aggiunte primitive per il processamento dei dati
Operazioni sui dati: relazionali, cartelle nidificate, semistrutturati, destrutturati
Pu嘆 girare su macchina singola, in pseudo-cluster, cluster o in ambiente cloud
Fornisce un motore di ricerca per effettuare analisi su flussi di dati con le modalit del
calcolo parallelo
Include un linguaggio Latin Pig per eseguire operazioni su i dati
Pig latin include operazioni con Keyword comuni come FILTER, JOIN SORT, GROUP,
FOREACH, LOAD, STORE, per facilitare lapprendimento per chi viene da linguaggi
tipo script o SQL
un linguaggio molto potente che riduce i tempi di sviluppo ed esprime complesse
trasformazioni di dati in poche righe di codice
16. PIG LATIN
Pig LATIN 竪 un linguaggio che permette di descrivere come il dato proveniente
da uno o pi湛 input deve essere processato, immagazzinato e veicolato verso uno
o pi湛 output.
PIG LATIN 竪 un linguaggio a grafo aciclico diretto (DAG), in altre parole non ha
cicli come lSQL. Quindi non ci sono istruziono tipo: if, loop, for
PIG LATIN permette di addizionare User Defined Functions (UDF) da altri
linguaggi, questo permette di avere librerie con funzioni per i calcoli statistici e
data mining
Un classico script in PIG Latin si compone di
Unoperazione di LOAD che carica I dati da uno o pi湛 sorgenti
Una serie di trasformazioni sul dato (FILTER, GROUP, FOREACH,..)
Unoperazione di STORE che immagazina il risultato finale
Unoperazione di DUMP che mostra il risultato verso lutente finale
17. Apache SPARK
Spark 竪 un framework open-source. scritto in Scala che 竪 un linguaggio
funzionale implementato per girare su una Java Virtual machine
Evita colli di bottiglia in quanto il dato 竪 distribuito quando si immagazzina
simile ad Hadoop Map Reducer in quanto alloca gli ordini di processamento sui
nodi dove il dato 竪 immagazzinato
Pu嘆 immagazzinare i dati nella memoria dei nodi dato
molto versatile in quanto pu嘆 utilizzare una ricca collezione di API fornite
tramite JAVA, SCALA, PYTHON. Dispone anche di shell, scritte in PYTHON e
SCALA
Occorrono meno righe di codice se confrontato con Hadoop MR
In SPARK si possono utilizzare in unico ambiente: SQL, primitive per il flusso dati
ed algoritmi analitici complessi
18. Set di dati distribuiti resilienti (Resilient
Distributed Datasets - RDD)
In ingegneria, la resilienza 竪 la capacit di un materiale di assorbire energia di
deformazione elastica
Ogni driver Spark ha la possibilit di lanciare operazioni in parallelo su un cluster
Il driver 竪 il programma che contiene la funzione main(). Definisce anche quali
sono gli insiemi dei dati dove eseguire le operazioni
Per eseguire le operazioni Spark gestisce un insieme di nodi (esecutori), cos狸 le
operazioni verranno eseguite in parallelo su di essi
Il programma Driver per accedere a Spark usa un oggetto SparkContext, che
agisce come connettore verso il cloud. Una volta che viene inizializzato pu嘆
iniziare a costruire un RDD (Resilient Distributed Datasets)
19. RDD in Spark
Un RDD 竪 una collezione di elementi distribuita
Spark crea un RDD, oppure lo trasforma, oppure esegue dei calcoli su un RDD
per avere un risultato
Gli RDD sono
Collezioni di oggetti sparsi allinterno di un cluster o di un cloud
Collezioni derivate da trasformazioni ( ad esempio la mappature o la lista estratta
da oggetti immagazzinati in precedenza)
Spark provvede alla capacit di controllare la persistenza di questi oggetti (ad
esempio alcuni possono essere in RAM)
Se alcuni RDD vengono fortuitamente distrutti, Spark provvede a ricostruirli
20. Operazioni SPARK su RDD
Le operazioni che si possono fare in Spark
sugli RDD sono di due tipi
Trasformazioni: da un RDD ritorna un altro
RDD attraverso operazioni tipo map, filter,
join
Azioni: operazioni che ritornano un
risultato o lo immagazzinano come ad
esempio count, reduce, collect.
21. FINE PRESENTAZIONE
Grazie per la cortese attenzione
Fonti. BIG DATA from data to decisions. Queensland University of Technology