ݺߣ

ݺߣShare a Scribd company logo
Arterial Blood Gas
analysis
Dr Abdullah
PG 2 (Medicine)
AMU Aligarh
Overview
ABG Sampling
Interpretation of ABG
 Gas Exchange
 Acid Base status
Applications of ABG
o To document respiratory failure and assess
its severity
o To monitor patients on ventilators and
assist in weaning
o To assess acid base imbalance in critical
illness
o To assess response to therapeutic
interventions and mechanical ventilation
o To assess pre-op patients
ABG – Procedure and Precautions
Where to place -- the options
Radial
Dorsalis Pedis
Femoral
Brachial
Technical Errors
Excessive Heparin
 Ideally : Pre-heparinised ABG syringes
 Syringe FLUSHED with 0.5ml 1:1000 Heparin &
emptied
 DO NOT LEAVE EXCESSIVE HEPARIN IN
THE SYRINGE
HEPARIN DILUTIONAL
EFFECT
HCO3
-
pCO2
ABGSyringe
Technical Errors
 Risk of alteration of results  with:
1) size of syringe/needle
2) vol of sample
 Syringes must have > 50% blood
 Use only 3ml or less syringe
 25% lower values if 1 ml sample taken in 10 ml
syringe (0.25 ml heparin in needle)
Technical Errors
Air Bubbles
 pO2 150 mm Hg & pCO2 0 mm Hg
🠶Contact with AIR BUBBLES
 pO2 &  pCO2
 Seal syringe immediately after sampling
-
Body Temperature
 Affects values of pCO2 and HCO3 only
 ABG Analyser controlled for Normal Body
temperatures
Technical Errors
WBC Counts
 0.01 ml O2 consumed/dL/min
 Marked increase in high TLC/plt counts :  pO2
 Chilling / immediate analysis
ABG Syringe must be transported earliest via COLD
CHAIN
Change/10 min Uniced 370C Iced 40C
pH 0.01 0.001
pCO2 1 mm Hg 0.1 mm Hg
pO2 0.1% 0.01%
ABGEquipment
3 electrode system that measures
three fundamental variables - pO2,
pCO2 and pH
All others parameters such as HCO3
-
computed by software using standard
formulae
Interpretation of ABG
 Gas exchange
 Acid Base Status
Gas exchange
AssessmentOf Gasexchange
PaO2 vs SpO2
Alveolar-arterial O2 gradient
PaO2/FiO2 ratio
PaCO2
Determinants of PaO2
PaO2 is dependant upon Age, FiO2, Patm
As Age the expected PaO2
• PaO2 = 109 - 0.4 (Age)
As FiO2 the expected PaO2
• Alveolar Gas Equation:
• PAO2= (PB- PH20) x FiO2- pCO2/R
Hypoxemia
o Normal PaO2 : 95 – 100 mm Hg
o Mild Hypoxemia : PaO2 60 – 80 mm Hg
o Moderate Hypoxemia : PaO2 40 – 60 mm Hg
– tachycardia, hypertension, cool extremities
o Severe Hypoxemia : PaO2 < 40 mm Hg –
severe arrhythmias, brain injury, death
Alveolar-arterial O2 gradient
o P(A-a)O2 is the alveolar-arterial difference in
partial pressure of oxygen
o PAO2 = 150 – PaCO2/RQ
o Normal range : 5 - 25 mm Hg (increases with
age)
o Increase P(A-a)O2 : lung parenchymal disease
PaO2 / FiO2 ratio
Inspired Air FiO2 = 21%
PiO2 = 150 mmHg
PalvO2 = 100 mmHg
PaO2 = 90 mmHg
O2
CO2
Berlincriteria for ARDSseverity
PaO2 / FiO2 ratio Inference
200 - 300 mm Hg Mild ARDS
100 - 200 mm Hg Moderate ARDS
< 100 mm Hg Severe ARDS
ARDS is characterized by an acute onset within 1 week, bilateral
radiographic pulmonary infiltrates, respiratory failure not fully
explained by heart failure or volume overload, and a PaO2/FiO2
ratio < 300 mm Hg
Hypercapnia
o PaCO2 is directly proportional to CO2
production and inversely proportional to
alveolar ventilation
o Normal PaCO2 is 35 – 45 mm Hg
balance acido base.pptx
AcidBaseStatus
Basics
•Nano equivalent =1×10-9
pH = -log [H+] : Sorensen formula
•[H+] = 40 nEq/L (16 to 160 nEq/L) at pH-7.4
Henderson-Hasselbalch Equation
o Correlates metabolic & respiratory regulations
-
HCO3
pH = pK + log ----------------
.03 x [PaCO2]
o Simplified
-
HCO3
pH ~ ---------
PaCO2
balance acido base.pptx
Bicarbonate Buffer System
CO2 + H2O carbonic anhydrase
H2CO3 H+ + HCO3
-
Acidosis : Acid = H+
-
H+ + HCO3 H2CO3 CO2 + H2O
Alkalosis : Alkali + Weak Acid = H2CO3
CO2 + H20 -
HCO3 + H+
H2CO3
+
Alkali
Respiratory Regulation
H+ PaCO2
H+ PaCO2
ALVEOLAR
VENTILATION
ALVEOLAR
VENTILATION
Renal Regulation
Kidneys control the acid-base balance by excreting
either a basic or an acidic urine
-
-
• Excretion of HCO3
• Regeneration of HCO3
with excretion of H+
Excretion of excess H+ & generation of new
-
HCO3 : The Ammonia Buffer System
• In chronic acidosis, the dominant mechanism
+
of acid eliminated excretion of NH4
GLUTAMINE
HCO3
- NH3
REABSORBED NH3 + H+ NH4
+
EXCRETED
Response…
Bicarbonate Buffer System
• Acts in few seconds
Respiratory Regulation
• Starts within minutes good response by 2hrs,
complete by 12-24 hrs
Renal Regulation
• Starts after few hrs, complete by 5-7 days
Abnormal Values
pH < 7.35
• Acidosis (metabolic
and/or respiratory)
pH > 7.45
• Alkalosis (metabolic
and/or respiratory)
paCO2 > 45 mm Hg
• Respiratory acidosis
(alveolar hypoventilation)
paCO2 < 35 mm Hg
• Respiratory alkalosis
(alveolar hyperventilation)
HCO3
- < 22 meq/L
• Metabolic acidosis
HCO3
- > 26 meq/L
• Metabolic alkalosis
Simple Acid-BaseDisorders
Simple acid-base disorder – a
single primary process of acidosis
or alkalosis with or without
compensation
Compensation…
-
The body always tries to normalize the pH so…
 pCO2 and HCO3 rise & fall together in simple
disorders
 Compensation never overcorrects the pH
 Lack of compensation in an appropriate time
defines a 2nd disorder
 Require normally functioning lungs and kidneys
Characteristicsof  acid-basedisorders
DISORDER PRIMARY RESPONSE COMPENSATORY
RESPONSE
Metabolic
acidosis
 [H+]  PH  HCO3
-  pCO2
Metabolic
alkalosis
 [H+]  PH  HCO3
-  pCO2
Respiratory
y acidosis
 [H+]  PH  pCO2  HCO3
-
Respiratory
y alkalosis
 [H+]  PH  pCO2  HCO3
-
Disorder Compensatory response
Respiratoryacidosis
Acute ↑ HCO3
– 1 mEq/L per 10 mm Hg ↑ pCO2
Chronic ↑ HCO3
– 3.5 mEq/L per 10 mm Hg ↑ pCO2
Respiratoryalkalosis
Acute ↓ HCO3
– 2 mEq/L per 10 mm Hg ↓ pCO2
Chronic ↓ HCO3
– 5 mEq/L per 10 mm Hg ↓ pCO2
Metabolic acidosis ↓ pCO2 1.3 mm Hg per 1 mEq/L ↓ HCO3
–
(Limit of CO2 is 10 mm Hg)
Metabolic alkalosis ↑ pCO2 0.7 mm Hg per 1 mEq/L ↑ HCO3
–
(Limit of CO2 is 55 mm Hg)
Mixed Acid-baseDisorders
Presence of more than one acid base
-
disorder simultaneously
Clues to a mixed disorder:
o Normal pH with abnormal HCO3 or pCO2
-
o pCO2 and HCO3 move in opposite directions
o pH changes in an opposite direction for a
known primary disorder
Anion Gap
AG = [Na+
] - [Cl-
+HCO3
-
]
• Elevated anion gap represents
metabolic acidosis
• Normal value: 12 ± 4 mEq/L
• Major unmeasured anions
– albumin
– phosphates
– sulfates
– organic anions
Unmeasured
cations
Unmeasured
anions
Na+
Cl-
HCO3
-
Cations
=
Anions
Anion Gap=
Metabolic
Acidosis
Increased Anion Gap
o Diabetic Ketoacidosis
o Chronic Kidney Disease
o Lactic Acidosis
o Alcoholic Ketoacidosis
o Aspirin Poisoning
o Methanol Poisoning
o Ethylene Glycol Poisoning
o Starvation
Normal Anion Gap
o Diarrhea
o Renal Tubular Acidosis
o Addisons Disease
o Carbonic Anhydrase
Inhibitors
Delta Gap
o The difference between patient’s AG & normal AG
o The coexistence of 2 metabolic acid-base
disorders may be apparent
Delta gap = Anion gap – 12
-
Delta Gap + HCO3 = 22-26 mEq/l
 If >26, consider additional metabolic alkalosis
 If <22, consider additional non AG metabolic acidosis
STEP-BY-STEP ANALYSIS
OF
ACID-BASE STATUS
1. Look at the pO2 (<80 mm Hg)
and O2 saturation(<90%) for
hypoxemia
2. Look at the pH
 < 7.35 : ACIDOSIS
 > 7.45 : ALKALOSIS
 7.35 – 7.45 : normal/mixed disorder
3. Look at pCO2
 > 45 mm Hg : Increased (Acidic)
 < 35 mm Hg : Decreased (Alkalotic)
3
4. Look at the HCO -
 > 26 mEq/L : Increased (Alkalotic)
 < 22 mEq/L : Decreased (Acidic)
5. Determine the acid-base disorder,
-
match either the pCO2 or the HCO3 with
the pH
6. Compensation… are the CO2 or
HCO3
- of opposite type ?
Is the compensation adequate??
METABOLIC DISORDER PCO2expected
• PCO2measured ≠ PCO2expected MIXED
DISORDER
RESPIRATORY DISORDER pHexpected
• pHm ≠ pHe range MIXED DISORDER
7. Calculate the anion gap if it is
more there is Metabolic acidosis
AG = [Na+] - [Cl- +HCO3
-]
8. Does the anion gap explain the
-
change in HCO3 ?
Calculate Delta gap
(rule out co-existence of 2 acid-base
disorders)
9. Examine the patient to
determine whether the clinical
signs are compatible with the
acid-base analysis…
balance acido base.pptx
Treat the patient
not the ABG!!!
Thankyou…

More Related Content

balance acido base.pptx

  • 1. Arterial Blood Gas analysis Dr Abdullah PG 2 (Medicine) AMU Aligarh
  • 2. Overview ABG Sampling Interpretation of ABG  Gas Exchange  Acid Base status
  • 3. Applications of ABG o To document respiratory failure and assess its severity o To monitor patients on ventilators and assist in weaning o To assess acid base imbalance in critical illness o To assess response to therapeutic interventions and mechanical ventilation o To assess pre-op patients
  • 4. ABG – Procedure and Precautions Where to place -- the options Radial Dorsalis Pedis Femoral Brachial
  • 5. Technical Errors Excessive Heparin  Ideally : Pre-heparinised ABG syringes  Syringe FLUSHED with 0.5ml 1:1000 Heparin & emptied  DO NOT LEAVE EXCESSIVE HEPARIN IN THE SYRINGE HEPARIN DILUTIONAL EFFECT HCO3 - pCO2
  • 7. Technical Errors  Risk of alteration of results  with: 1) size of syringe/needle 2) vol of sample  Syringes must have > 50% blood  Use only 3ml or less syringe  25% lower values if 1 ml sample taken in 10 ml syringe (0.25 ml heparin in needle)
  • 8. Technical Errors Air Bubbles  pO2 150 mm Hg & pCO2 0 mm Hg 🠶Contact with AIR BUBBLES  pO2 &  pCO2  Seal syringe immediately after sampling - Body Temperature  Affects values of pCO2 and HCO3 only  ABG Analyser controlled for Normal Body temperatures
  • 9. Technical Errors WBC Counts  0.01 ml O2 consumed/dL/min  Marked increase in high TLC/plt counts :  pO2  Chilling / immediate analysis ABG Syringe must be transported earliest via COLD CHAIN Change/10 min Uniced 370C Iced 40C pH 0.01 0.001 pCO2 1 mm Hg 0.1 mm Hg pO2 0.1% 0.01%
  • 10. ABGEquipment 3 electrode system that measures three fundamental variables - pO2, pCO2 and pH All others parameters such as HCO3 - computed by software using standard formulae
  • 11. Interpretation of ABG  Gas exchange  Acid Base Status
  • 13. AssessmentOf Gasexchange PaO2 vs SpO2 Alveolar-arterial O2 gradient PaO2/FiO2 ratio PaCO2
  • 14. Determinants of PaO2 PaO2 is dependant upon Age, FiO2, Patm As Age the expected PaO2 • PaO2 = 109 - 0.4 (Age) As FiO2 the expected PaO2 • Alveolar Gas Equation: • PAO2= (PB- PH20) x FiO2- pCO2/R
  • 15. Hypoxemia o Normal PaO2 : 95 – 100 mm Hg o Mild Hypoxemia : PaO2 60 – 80 mm Hg o Moderate Hypoxemia : PaO2 40 – 60 mm Hg – tachycardia, hypertension, cool extremities o Severe Hypoxemia : PaO2 < 40 mm Hg – severe arrhythmias, brain injury, death
  • 16. Alveolar-arterial O2 gradient o P(A-a)O2 is the alveolar-arterial difference in partial pressure of oxygen o PAO2 = 150 – PaCO2/RQ o Normal range : 5 - 25 mm Hg (increases with age) o Increase P(A-a)O2 : lung parenchymal disease
  • 17. PaO2 / FiO2 ratio Inspired Air FiO2 = 21% PiO2 = 150 mmHg PalvO2 = 100 mmHg PaO2 = 90 mmHg O2 CO2
  • 18. Berlincriteria for ARDSseverity PaO2 / FiO2 ratio Inference 200 - 300 mm Hg Mild ARDS 100 - 200 mm Hg Moderate ARDS < 100 mm Hg Severe ARDS ARDS is characterized by an acute onset within 1 week, bilateral radiographic pulmonary infiltrates, respiratory failure not fully explained by heart failure or volume overload, and a PaO2/FiO2 ratio < 300 mm Hg
  • 19. Hypercapnia o PaCO2 is directly proportional to CO2 production and inversely proportional to alveolar ventilation o Normal PaCO2 is 35 – 45 mm Hg
  • 22. Basics •Nano equivalent =1×10-9 pH = -log [H+] : Sorensen formula •[H+] = 40 nEq/L (16 to 160 nEq/L) at pH-7.4
  • 23. Henderson-Hasselbalch Equation o Correlates metabolic & respiratory regulations - HCO3 pH = pK + log ---------------- .03 x [PaCO2] o Simplified - HCO3 pH ~ --------- PaCO2
  • 25. Bicarbonate Buffer System CO2 + H2O carbonic anhydrase H2CO3 H+ + HCO3 - Acidosis : Acid = H+ - H+ + HCO3 H2CO3 CO2 + H2O Alkalosis : Alkali + Weak Acid = H2CO3 CO2 + H20 - HCO3 + H+ H2CO3 + Alkali
  • 26. Respiratory Regulation H+ PaCO2 H+ PaCO2 ALVEOLAR VENTILATION ALVEOLAR VENTILATION
  • 27. Renal Regulation Kidneys control the acid-base balance by excreting either a basic or an acidic urine - - • Excretion of HCO3 • Regeneration of HCO3 with excretion of H+
  • 28. Excretion of excess H+ & generation of new - HCO3 : The Ammonia Buffer System • In chronic acidosis, the dominant mechanism + of acid eliminated excretion of NH4 GLUTAMINE HCO3 - NH3 REABSORBED NH3 + H+ NH4 + EXCRETED
  • 29. Response… Bicarbonate Buffer System • Acts in few seconds Respiratory Regulation • Starts within minutes good response by 2hrs, complete by 12-24 hrs Renal Regulation • Starts after few hrs, complete by 5-7 days
  • 30. Abnormal Values pH < 7.35 • Acidosis (metabolic and/or respiratory) pH > 7.45 • Alkalosis (metabolic and/or respiratory) paCO2 > 45 mm Hg • Respiratory acidosis (alveolar hypoventilation) paCO2 < 35 mm Hg • Respiratory alkalosis (alveolar hyperventilation) HCO3 - < 22 meq/L • Metabolic acidosis HCO3 - > 26 meq/L • Metabolic alkalosis
  • 31. Simple Acid-BaseDisorders Simple acid-base disorder – a single primary process of acidosis or alkalosis with or without compensation
  • 32. Compensation… - The body always tries to normalize the pH so…  pCO2 and HCO3 rise & fall together in simple disorders  Compensation never overcorrects the pH  Lack of compensation in an appropriate time defines a 2nd disorder  Require normally functioning lungs and kidneys
  • 33. Characteristicsof  acid-basedisorders DISORDER PRIMARY RESPONSE COMPENSATORY RESPONSE Metabolic acidosis  [H+]  PH  HCO3 -  pCO2 Metabolic alkalosis  [H+]  PH  HCO3 -  pCO2 Respiratory y acidosis  [H+]  PH  pCO2  HCO3 - Respiratory y alkalosis  [H+]  PH  pCO2  HCO3 -
  • 34. Disorder Compensatory response Respiratoryacidosis Acute ↑ HCO3 – 1 mEq/L per 10 mm Hg ↑ pCO2 Chronic ↑ HCO3 – 3.5 mEq/L per 10 mm Hg ↑ pCO2 Respiratoryalkalosis Acute ↓ HCO3 – 2 mEq/L per 10 mm Hg ↓ pCO2 Chronic ↓ HCO3 – 5 mEq/L per 10 mm Hg ↓ pCO2 Metabolic acidosis ↓ pCO2 1.3 mm Hg per 1 mEq/L ↓ HCO3 – (Limit of CO2 is 10 mm Hg) Metabolic alkalosis ↑ pCO2 0.7 mm Hg per 1 mEq/L ↑ HCO3 – (Limit of CO2 is 55 mm Hg)
  • 35. Mixed Acid-baseDisorders Presence of more than one acid base - disorder simultaneously Clues to a mixed disorder: o Normal pH with abnormal HCO3 or pCO2 - o pCO2 and HCO3 move in opposite directions o pH changes in an opposite direction for a known primary disorder
  • 36. Anion Gap AG = [Na+ ] - [Cl- +HCO3 - ] • Elevated anion gap represents metabolic acidosis • Normal value: 12 ± 4 mEq/L • Major unmeasured anions – albumin – phosphates – sulfates – organic anions
  • 38. Increased Anion Gap o Diabetic Ketoacidosis o Chronic Kidney Disease o Lactic Acidosis o Alcoholic Ketoacidosis o Aspirin Poisoning o Methanol Poisoning o Ethylene Glycol Poisoning o Starvation Normal Anion Gap o Diarrhea o Renal Tubular Acidosis o Addisons Disease o Carbonic Anhydrase Inhibitors
  • 39. Delta Gap o The difference between patient’s AG & normal AG o The coexistence of 2 metabolic acid-base disorders may be apparent Delta gap = Anion gap – 12 - Delta Gap + HCO3 = 22-26 mEq/l  If >26, consider additional metabolic alkalosis  If <22, consider additional non AG metabolic acidosis
  • 41. 1. Look at the pO2 (<80 mm Hg) and O2 saturation(<90%) for hypoxemia
  • 42. 2. Look at the pH  < 7.35 : ACIDOSIS  > 7.45 : ALKALOSIS  7.35 – 7.45 : normal/mixed disorder
  • 43. 3. Look at pCO2  > 45 mm Hg : Increased (Acidic)  < 35 mm Hg : Decreased (Alkalotic)
  • 44. 3 4. Look at the HCO -  > 26 mEq/L : Increased (Alkalotic)  < 22 mEq/L : Decreased (Acidic)
  • 45. 5. Determine the acid-base disorder, - match either the pCO2 or the HCO3 with the pH
  • 46. 6. Compensation… are the CO2 or HCO3 - of opposite type ?
  • 47. Is the compensation adequate?? METABOLIC DISORDER PCO2expected • PCO2measured ≠ PCO2expected MIXED DISORDER RESPIRATORY DISORDER pHexpected • pHm ≠ pHe range MIXED DISORDER
  • 48. 7. Calculate the anion gap if it is more there is Metabolic acidosis AG = [Na+] - [Cl- +HCO3 -]
  • 49. 8. Does the anion gap explain the - change in HCO3 ? Calculate Delta gap (rule out co-existence of 2 acid-base disorders)
  • 50. 9. Examine the patient to determine whether the clinical signs are compatible with the acid-base analysis…
  • 52. Treat the patient not the ABG!!! Thankyou…