2018/10/20コンピュータビジョン勉強会@関東「ECCV読み会2018」発表資料
Yew, Z. J., & Lee, G. H. (2018). 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. European Conference on Computer Vision.
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識?理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
2018/10/20コンピュータビジョン勉強会@関東「ECCV読み会2018」発表資料
Yew, Z. J., & Lee, G. H. (2018). 3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration. European Conference on Computer Vision.
2020/10/10に開催された第4回全日本コンピュータビジョン勉強会「人に関する認識?理解論文読み会」発表資料です。
以下の2本を読みました
Harmonious Attention Network for Person Re-identification. (CVPR2018)
Weekly Supervised Person Re-Identification (CVPR2019)
This document summarizes a paper titled "DeepI2P: Image-to-Point Cloud Registration via Deep Classification". The paper proposes a method for estimating the camera pose within a point cloud map using a deep learning model. The model first classifies whether points in the point cloud fall within the camera's frustum or image grid. It then performs pose optimization to estimate the camera pose by minimizing the projection error of inlier points onto the image. The method achieves more accurate camera pose estimation compared to existing techniques based on feature matching or depth estimation. It provides a new approach for camera localization using point cloud maps without requiring cross-modal feature learning.
Protect Your IoT Data with UbiBot's Private Platform.pptxユビボット 株式会社
?
Our on-premise IoT platform offers a secure and scalable solution for businesses, with features such as real-time monitoring, customizable alerts and open API support, and can be deployed on your own servers to ensure complete data privacy and control.
3. 紹介論文
? Active Object Localization with Deep Reinforcement
Learning
? Juan C. Caicedo, and Svetlana Lazebnik
? 物体検出のタスクにDeep Q-Networkを使用した
4. Deep Q-Network (DQN)
? Q Learningという強化学習のアルゴリズムに
Convolutional Neural Networkを適用
? 以下の論文で、機械にコンピュータゲームのやり方を学
習させ、3/7で人間以上のスコア
? Mnih, V., et al., “Playing Atari with Deep Reinforcement
Learning”, NIPS Deep Learning Workshop, 2013
? Mnih, V., et al., “Human-level control through deep
reinforcement learning”, Nature, 518 (7540), 529–533. 2015