狠狠撸

狠狠撸Share a Scribd company logo
從實驗室走進生產線
——談談怎麼和資料科學家合作
安捏母湯資料科學家
Source: http://codewithmax.com/2018/03/06/basic-example-of-a-neural-network-with-tensorflow-and-keras/
我以為的资料科学家
實際上的資料科學家
Source:	Sculley et	al.:	Hidden	Technical	Debt	in	Machine	Learning	Systems
当我想做一个「资料科学」专案的时候
当我想做一个「资料科学」专案的时候
資料清洗 資料分析 資料驗證
資料切分 訓練模型 驗證模型
當我想做一個「資料科學」產品的時候
Source: https://udn.com/news/story/11320/3222213
當我想做一個「資料科學」產品的時候
資料清洗 資料分析 資料驗證
資料切分 訓練模型 驗證模型
當我想做一個「資料科學」產品的時候
資料清洗 資料分析 資料驗證 資料切分
訓練模型 驗證模型 規模訓練 模型更新
模型上線 模型監控 模型日誌 模型優化
資料科學工作流程
? 一致的編排與環境
? 可擴張的團隊建模協作
? 持續滿足需求
? 改進迭代週期自動部署
? 可重現的結果
? 監控品質與效能測試監控
開發+運維
? 開發+運維=DevOps
? 使用者、開發人員、QA、以及運維人員協力解決
軟體遞交的問題。
資料+運維
? 資料+運維=DataOps
? 讓所有資料從業人員(包含資料分析師、資料科學
家、資料工程師和 IT 人員等等)一起來持續地遞
交有品質的資料給應用及商業流程。
資料+運維
Source: https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7
資料+運維
Source: https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7
資料+運維
Source: https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7
實踐 DataOps
Source: https://www.kubeflow.org/
實踐 DataOps
Source: KubeCon Europe 2018
實踐 DataOps
Source:	https://blog.paperspace.com/ci-cd-for-machine-learning-ai/
實踐 DataOps
Source:	https://blog.paperspace.com/ci-cd-for-machine-learning-ai/
實踐 DataOps
https://www.infuseai.io
SQL	DB
Cosmos	DB
Datawarehouse
Data	lake
Blob	storage
… Prepare	Data Build	&	Train Deploy
Machine	Learning	Process
How	much	is	this	car	worth?
Machine	Learning	Problem	Example
Model	Creation	Is	Typically	Time-Consuming
Mileage
Condition
Car	brand
Year	of	make
Regulations
…
Parameter	1
Parameter	2
Parameter	3
Parameter	4
…
Gradient	Boosted		
Nearest	Neighbors	
SVM
Bayesian	Regression
LGBM	
…
Mileage Gradient Boosted Criterion
Loss
Min	Samples	Split
Min	Samples	Leaf
Others Model
Which algorithm? Which parameters?Which features?
Car brand
Year of make
Criterion
Loss
Min	Samples	Split
Min	Samples	Leaf
Others
N	Neighbors
Weights
Metric
P
Others
Which algorithm? Which parameters?Which features?
Mileage
Condition
Car	brand
Year	of	make
Regulations
…
Gradient	Boosted		
Nearest	Neighbors	
SVM
Bayesian	Regression
LGBM	
…
Nearest Neighbors
Model
Iterate
Gradient BoostedMileage
Car brand
Year of make
Car brand
Year of make
Condition
Model	Creation	Is	Typically	Time-Consuming
Which algorithm? Which parameters?Which features?
Iterate
Model	Creation	Is	Typically	Time-Consuming
Source:	http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
Machine	Learning	Complexity
Dataset
Training	
Algorithm	1
Hyperparameter
Values	– config	1
Model	1
Hyperparameter
Values	– config	2
Model	2
Hyperparameter
Values	– config	3
Model	3
Model	Training
InfrastructureTraining	
Algorithm	2
Hyperparameter
Values	– config	4
Model	4
Model	Selection	&	Hyperparameter	Tuning
Introducing	Automated	Machine	Learning
Dataset
Optimization
Metric
Constraints
(Time/Cost)
ML	ModelAutomated ML
Accessible	&	Faster
Enter data
Define goals
Apply constraints
Output
Automated	ML	Accelerates	Model	Development	
Input Intelligently test multiple models in parallel
Optimized model
Automated	ML	Customer	Testimonials	
? Press-coverage	from	
public	preview:
? CNET
? VentureBeat
? PRNewswire
“I	quite	like	your	AutoML	function.	It	gives	me	good	results	compared	to	
other	libraries	I	tested	before	(tpot and	auto-sklearn)	that	I	believe	was	
only	looking	at	scores	and	often	gave	me	models	that	over-trained	my	
data.	And	of	course	the	model	from	your	suggested	code	is	better.”
- Big	oil	company
“I	will	start	with	AutoML	and	use	the	algorithm	that	AutoML	
recommends	to	further	tune	the	model”
- Data	Scientist
“I	actually	enjoy	being	able	to	use	AutoML	in	a	Jupyter	notebook.	The	
DataRobot	interface	was	nice	for	non-experts,	but	for	someone	like	me,	
it	felt	a	bit	basic.”
- Data	Scientist
Automated	ML	Capabilities
Automated	ML	Capabilities
? Based	on	Microsoft	Research
? Brain	trained	with	several	
million	experiments
? Collaborative	filtering	and	
Bayesian	optimization
? Privacy	preserving:	No	need	to	
“see”	the	data
Automated	ML	Capabilities
? ML	Scenarios:	Classification	&	
Regression,	Forecasting
? Integration:	Azure	Machine	
Learning,	Azure	Notebooks,	
Jupyter Notebooks
? Data	Type:	Numeric,	Text
? Languages:	Python	SDK	for	
deployment	and	hosting	for	
inference	
? Training	Compute:	Local	Machine,	
Remote	Azure	DSVM	(Linux),	Azure	
Batch	AI,	Databricks
? Transparency:	View	run	history,	
model	metrics
? Scale:	Faster	model	training	using	
multiple	cores	and	parallel	
experiments
? Dropping	high	cardinality	or	no	
variance	features
? Missing	value	imputation
? Generating	additional	features
? Transformations	and	encodings
Feature	Engineering
? Feature	importance	as	part	of	
training
? Local	feature	importance	for	a	
given	sample
Model	Explain-ability
Q	&	A
Ad

Recommended

用十分鐘瞭解 愛因斯坦的相對論
用十分鐘瞭解 愛因斯坦的相對論
鍾誠 陳鍾誠
?
用十分鐘瞭解 《單晶片、機器人與電子元件》 (Arduino + Raspberry Pi)
用十分鐘瞭解 《單晶片、機器人與電子元件》 (Arduino + Raspberry Pi)
鍾誠 陳鍾誠
?
狈耻颈迟谤补肠办を用いて自作ヒューマノイドを动かしてみた话
狈耻颈迟谤补肠办を用いて自作ヒューマノイドを动かしてみた话
Hirokazu Onomichi
?
阶层ベイズでプロ野球各球団の「本当の强さ」を推定してみる
阶层ベイズでプロ野球各球団の「本当の强さ」を推定してみる
Hisao Soyama
?
AIOpsで実現する効率化 OSC 2022 Online Spring TIS
AIOpsで実現する効率化 OSC 2022 Online Spring TIS
Daisuke Ikeda
?
Ccns 網路基礎概論
Ccns 網路基礎概論
世平 梁
?
用十分鐘瞭解《如何避免寫出悲劇的 C 語言》
用十分鐘瞭解《如何避免寫出悲劇的 C 語言》
鍾誠 陳鍾誠
?
DevSecOps: What Why and How : Blackhat 2019
DevSecOps: What Why and How : Blackhat 2019
NotSoSecure Global Services
?
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
Mikiya Okuno
?
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
鍾誠 陳鍾誠
?
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
鍾誠 陳鍾誠
?
文脉自由文法の话
文脉自由文法の话
kogecoo
?
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
Syo Kyojin
?
SMOTE resampling method slides 02-19-2018
SMOTE resampling method slides 02-19-2018
Shuma Ishigami
?
尝颈苍辩の速度测ってみた
尝颈苍辩の速度测ってみた
Core Concept Technologies
?
简単な算数でできる文章校正
简単な算数でできる文章校正
hirokiky
?
セットベース开発アプローチ
セットベース开発アプローチ
Takashi Tomizawa
?
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Shunsuke Maeda
?
REST API に疲れたあなたへ贈る GraphQL 入門
REST API に疲れたあなたへ贈る GraphQL 入門
Keisuke Tsukagoshi
?
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
Naoki Hayashi
?
离散时间ロジスティック回帰モデル解説
离散时间ロジスティック回帰モデル解説
akira_11
?
如何設計電腦 -- 還有讓電腦變快的那些方法
如何設計電腦 -- 還有讓電腦變快的那些方法
鍾誠 陳鍾誠
?
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
Amane Tanaka
?
DevOps for beginners
DevOps for beginners
Pradeep Patel, PMP?
?
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
Shintarou Okada
?
Apache Auroraの始めかた
Apache Auroraの始めかた
Masahito Zembutsu
?
DevOps - Transforming the Traditional SDLC
DevOps - Transforming the Traditional SDLC
Hughes Systique Corporation
?
AgileCamp 2015: Scrum for Full Scale Manufacturing, Joe Justice
AgileCamp 2015: Scrum for Full Scale Manufacturing, Joe Justice
Hyperdrive Agile Leadership (powered by Bratton & Company)
?
Data Thinking Workshop 03
Data Thinking Workshop 03
Chia-Hsin Liu
?
从数据处理到资料视觉化-商业智慧的实作与应用
从数据处理到资料视觉化-商业智慧的实作与应用
Pei-Syuan Li
?

More Related Content

What's hot (20)

なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
Mikiya Okuno
?
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
鍾誠 陳鍾誠
?
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
鍾誠 陳鍾誠
?
文脉自由文法の话
文脉自由文法の话
kogecoo
?
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
Syo Kyojin
?
SMOTE resampling method slides 02-19-2018
SMOTE resampling method slides 02-19-2018
Shuma Ishigami
?
尝颈苍辩の速度测ってみた
尝颈苍辩の速度测ってみた
Core Concept Technologies
?
简単な算数でできる文章校正
简単な算数でできる文章校正
hirokiky
?
セットベース开発アプローチ
セットベース开発アプローチ
Takashi Tomizawa
?
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Shunsuke Maeda
?
REST API に疲れたあなたへ贈る GraphQL 入門
REST API に疲れたあなたへ贈る GraphQL 入門
Keisuke Tsukagoshi
?
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
Naoki Hayashi
?
离散时间ロジスティック回帰モデル解説
离散时间ロジスティック回帰モデル解説
akira_11
?
如何設計電腦 -- 還有讓電腦變快的那些方法
如何設計電腦 -- 還有讓電腦變快的那些方法
鍾誠 陳鍾誠
?
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
Amane Tanaka
?
DevOps for beginners
DevOps for beginners
Pradeep Patel, PMP?
?
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
Shintarou Okada
?
Apache Auroraの始めかた
Apache Auroraの始めかた
Masahito Zembutsu
?
DevOps - Transforming the Traditional SDLC
DevOps - Transforming the Traditional SDLC
Hughes Systique Corporation
?
AgileCamp 2015: Scrum for Full Scale Manufacturing, Joe Justice
AgileCamp 2015: Scrum for Full Scale Manufacturing, Joe Justice
Hyperdrive Agile Leadership (powered by Bratton & Company)
?
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
なぜ、いま リレーショナルモデルなのか(理論から学ぶデータベース実践入門読書会スペシャル)
Mikiya Okuno
?
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
用十分鐘瞭解JavaScript的模組 -- 《還有關於npm套件管理的那些事情》
鍾誠 陳鍾誠
?
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
深度學習的捲積神經網路 -- (使用JavaScript / node.js實作)
鍾誠 陳鍾誠
?
文脉自由文法の话
文脉自由文法の话
kogecoo
?
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
通時的な単語の意味変化の検出のサーベイ (Dynamic Word Embeddings Survey)
Syo Kyojin
?
SMOTE resampling method slides 02-19-2018
SMOTE resampling method slides 02-19-2018
Shuma Ishigami
?
简単な算数でできる文章校正
简単な算数でできる文章校正
hirokiky
?
セットベース开発アプローチ
セットベース开発アプローチ
Takashi Tomizawa
?
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Dangerて?pull requestレヒ?ューの指摘事項を減らす
Shunsuke Maeda
?
REST API に疲れたあなたへ贈る GraphQL 入門
REST API に疲れたあなたへ贈る GraphQL 入門
Keisuke Tsukagoshi
?
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
【招待讲演】パラメータ制约付き行列分解のベイズ汎化误差解析【厂迟补迟蝉惭尝若手シンポ2020】
Naoki Hayashi
?
离散时间ロジスティック回帰モデル解説
离散时间ロジスティック回帰モデル解説
akira_11
?
如何設計電腦 -- 還有讓電腦變快的那些方法
如何設計電腦 -- 還有讓電腦變快的那些方法
鍾誠 陳鍾誠
?
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
FMI-Ver 1.0 FMI for Model Exchange のモデルについて
Amane Tanaka
?
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
耻苍颈辩耻别冲辫迟谤にポインタ以外のものを持たせるとき
Shintarou Okada
?

Similar to Data Ops:從實驗室走進生產線, 談談怎麼和資料科學家合作 (9)

Data Thinking Workshop 03
Data Thinking Workshop 03
Chia-Hsin Liu
?
从数据处理到资料视觉化-商业智慧的实作与应用
从数据处理到资料视觉化-商业智慧的实作与应用
Pei-Syuan Li
?
Automated Machine Learning
Automated Machine Learning
Frank Fang Kuo Yu
?
Baisc Deep Learning HandsOn
Baisc Deep Learning HandsOn
Sean Yu
?
[系列活動] 手把手的深度學實務
[系列活動] 手把手的深度學實務
台湾资料科学年会
?
NTU DBME5028 Week5 Introduction to Machine Learning
NTU DBME5028 Week5 Introduction to Machine Learning
Sean Yu
?
[系列活動] 手把手的深度學習實務
[系列活動] 手把手的深度學習實務
台湾资料科学年会
?
Hands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep Learning
Chun-Ming Chang
?
Hands-on ML - CH1
Hands-on ML - CH1
Jamie (Taka) Wang
?
Data Thinking Workshop 03
Data Thinking Workshop 03
Chia-Hsin Liu
?
从数据处理到资料视觉化-商业智慧的实作与应用
从数据处理到资料视觉化-商业智慧的实作与应用
Pei-Syuan Li
?
Baisc Deep Learning HandsOn
Baisc Deep Learning HandsOn
Sean Yu
?
NTU DBME5028 Week5 Introduction to Machine Learning
NTU DBME5028 Week5 Introduction to Machine Learning
Sean Yu
?
[系列活動] 手把手的深度學習實務
[系列活動] 手把手的深度學習實務
台湾资料科学年会
?
Hands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep Learning
Chun-Ming Chang
?
Ad

Recently uploaded (20)

Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
?
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
?
Improving Data Integrity: Synchronization between EAM and ArcGIS Utility Netw...
Improving Data Integrity: Synchronization between EAM and ArcGIS Utility Netw...
Safe Software
?
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
Muhammad Rizwan Akram
?
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
?
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
?
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
?
Enhance GitHub Copilot using MCP - Enterprise version.pdf
Enhance GitHub Copilot using MCP - Enterprise version.pdf
Nilesh Gule
?
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Alliance
?
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
Safe Software
?
June Patch Tuesday
June Patch Tuesday
Ivanti
?
9-1-1 Addressing: End-to-End Automation Using FME
9-1-1 Addressing: End-to-End Automation Using FME
Safe Software
?
Information Security Response Team Nepal_npCERT_Vice_President_Sudan_Jha.pdf
Information Security Response Team Nepal_npCERT_Vice_President_Sudan_Jha.pdf
ICT Frame Magazine Pvt. Ltd.
?
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Impelsys Inc.
?
Turning the Page – How AI is Exponentially Increasing Speed, Accuracy, and Ef...
Turning the Page – How AI is Exponentially Increasing Speed, Accuracy, and Ef...
Impelsys Inc.
?
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Safe Software
?
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
?
Connecting Data and Intelligence: The Role of FME in Machine Learning
Connecting Data and Intelligence: The Role of FME in Machine Learning
Safe Software
?
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
?
Cyber Defense Matrix Workshop - RSA Conference
Cyber Defense Matrix Workshop - RSA Conference
Priyanka Aash
?
Securing Account Lifecycles in the Age of Deepfakes.pptx
Securing Account Lifecycles in the Age of Deepfakes.pptx
FIDO Alliance
?
Crypto Super 500 - 14th Report - June2025.pdf
Crypto Super 500 - 14th Report - June2025.pdf
Stephen Perrenod
?
Improving Data Integrity: Synchronization between EAM and ArcGIS Utility Netw...
Improving Data Integrity: Synchronization between EAM and ArcGIS Utility Netw...
Safe Software
?
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
ENERGY CONSUMPTION CALCULATION IN ENERGY-EFFICIENT AIR CONDITIONER.pdf
Muhammad Rizwan Akram
?
OWASP Barcelona 2025 Threat Model Library
OWASP Barcelona 2025 Threat Model Library
PetraVukmirovic
?
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Seminar: Targeting Trust: The Future of Identity in the Workforce.pptx
FIDO Alliance
?
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance Seminar State of Passkeys.pptx
FIDO Alliance
?
Enhance GitHub Copilot using MCP - Enterprise version.pdf
Enhance GitHub Copilot using MCP - Enterprise version.pdf
Nilesh Gule
?
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Seminar: Authentication for a Billion Consumers - Amazon.pptx
FIDO Alliance
?
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
FME for Distribution & Transmission Integrity Management Program (DIMP & TIMP)
Safe Software
?
June Patch Tuesday
June Patch Tuesday
Ivanti
?
9-1-1 Addressing: End-to-End Automation Using FME
9-1-1 Addressing: End-to-End Automation Using FME
Safe Software
?
Information Security Response Team Nepal_npCERT_Vice_President_Sudan_Jha.pdf
Information Security Response Team Nepal_npCERT_Vice_President_Sudan_Jha.pdf
ICT Frame Magazine Pvt. Ltd.
?
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Creating Inclusive Digital Learning with AI: A Smarter, Fairer Future
Impelsys Inc.
?
Turning the Page – How AI is Exponentially Increasing Speed, Accuracy, and Ef...
Turning the Page – How AI is Exponentially Increasing Speed, Accuracy, and Ef...
Impelsys Inc.
?
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Smarter Aviation Data Management: Lessons from Swedavia Airports and Sweco
Safe Software
?
Enabling BIM / GIS integrations with Other Systems with FME
Enabling BIM / GIS integrations with Other Systems with FME
Safe Software
?
Connecting Data and Intelligence: The Role of FME in Machine Learning
Connecting Data and Intelligence: The Role of FME in Machine Learning
Safe Software
?
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
War_And_Cyber_3_Years_Of_Struggle_And_Lessons_For_Global_Security.pdf
biswajitbanerjee38
?
Cyber Defense Matrix Workshop - RSA Conference
Cyber Defense Matrix Workshop - RSA Conference
Priyanka Aash
?
Ad

Data Ops:從實驗室走進生產線, 談談怎麼和資料科學家合作