際際滷

際際滷Share a Scribd company logo
APPENDIX 1
Introduction to Complex Numbers
A complex number consists of a real (Re) and an imaginary (Im) part. For instance the
complex number a 村 b 綻 jc has the real part Re 村 b and imaginary part Im 村 c,
j 村
鍖鍖鍖鍖鍖鍖鍖
1
p
. The complex number a can be presented in the complex number plane (Re, Im)
as a two-dimensional vector with the length
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
b2 綻 c2
p
and angular orientation, measured
from the axis Re, as arctan (c/b):
a 村
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
b2 綻 c2
p
e j arctan c=b丹 

鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
b2 綻 c2
p
e j
村
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
b2 綻 c2
p
cos  綻 j sin 丹  丹A1:1
where   arctan丹c=b (Figure A1.1). Note the important relationship, which ties complex
number to trigonometric functions:
e j
村 cos  綻 j sin 
Using this equation, for the specific angles the following relationships hold true:
e j90
村 j, e j180
村 1, e j270
村 j, e j0
村 1
The exponential function e j
can also be denoted exp ( j).
A complex conjugate of the number a 村 b 綻 jc is a 村 b  jc.
Figure A1.1 Complex number as a vector in the complex number plane.
989
息 2005 by Taylor  Francis Group, LLC
Note that in engineering use of complex numbers the imaginary part of the complex
number is often called quadrature, in order to avoid connotations with unreality. The
real part of the complex number is called direct.
Using Eq. (A1.1), the relationship between trigonometric and exponential functions can
be derived as follows:
cos  村
e j
綻 ej
2
, sin  村
e j
 ej
2j
村 j
e j
 ej
2
The hyperbolic functions look somewhat similar to the above functions, but they do not
involve complex numbers in their exponential functions. The hyperbolic sine and cosine are
as follows:
sin h  村
e
 e
2
, cos h  村
e
綻 e
2
The corresponding inverse functions are:
 村 arcsin h丹A 村 ln A 綻
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
A2 綻 1
p 
,  村 arccos h丹A 村 ln A 綻
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
A2  1
p 
Similarly, the hyperbolic functions tangent and cotangent, and inverse functions arctan h,
arccotan h, are introduced.
The addition (subtraction) of two complex numbers, a1, a2 is as follows:
a1 綻 a2 村 b1 綻 jc1  丹b2 綻 jc2 村 丹b1  b2 綻 j丹c1  c2
The addition (subtraction) of the complex numbers presented in the exponential format is
as follows:
A e j
 B e j
村 C e j
where
C 村
鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖
A2 綻 B2  2AB cos丹

p
, 
 村 arctan
A sin   B sin
Ad

Recommended

Exponential_Logarithm Game
Exponential_Logarithm Game
Irma Crespo
Alg2 lesson 8-5
Alg2 lesson 8-5
Carol Defreese
Q1 Conics
Q1 Conics
xxcoolguyxx
9706 accounting november 2010 grade thresholds ucles 2010 accounting
9706 accounting november 2010 grade thresholds ucles 2010 accounting
Alpro
Presentation - MA181 - Final
Presentation - MA181 - Final
Abraham Bedada
Class 9th ch 2 polynomials quiz
Class 9th ch 2 polynomials quiz
ssusera41fd2
9706 accounting november 2011 grade thresholds university of cambridge intern...
9706 accounting november 2011 grade thresholds university of cambridge intern...
Alpro
Booth's Algorithm Fully Explained With Flow Chart PDF
Booth's Algorithm Fully Explained With Flow Chart PDF
Parthdhwajendra Mishra
Feb 26 Cartesian Planes 2
Feb 26 Cartesian Planes 2
ste ve
9706 accounting november 2009 grade thresholds ucles 2009 accounting
9706 accounting november 2009 grade thresholds ucles 2009 accounting
Alpro
Ecuaciones de la_elipse_1
Ecuaciones de la_elipse_1
jesquerrev1
Formula
Formula
saiful bahrin
Formulas
Formulas
ogonaga1992
Vectores operaciones blog01
Vectores operaciones blog01
Marta Mart鱈n
Garcia luismiguel actividad3_5
Garcia luismiguel actividad3_5
ProfLuisMiguelGarca
Maths ar. of triangles shubham n group
Maths ar. of triangles shubham n group
shubham jha
1. introduction to complex numbers
1. introduction to complex numbers
悴 悋惠悋慍
Complex%20numbers
Complex%20numbers
cshekhar5784
Complex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdf
d00a7ece
Complex Numbers
Complex Numbers
Arun Umrao
Complex analysis book by iit
Complex analysis book by iit
JITENDRA SUWASIYA
presentation.pptx
presentation.pptx
ahmed219190
Complex numbers org.ppt
Complex numbers org.ppt
Osama Tahir
Freecomplexnumbers
Freecomplexnumbers
MUSTAFA MABUTA
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
ThapeloTsepo1
Math20001 dec 2015
Math20001 dec 2015
Atef Alnazer
Complex numbers
Complex numbers
爐爛爐劇爐爐 爐爐爐逗ぎ爛
An introdcution to complex numbers jcw
An introdcution to complex numbers jcw
jenniech
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
bagariakartik123
1.3 Complex Numbers
1.3 Complex Numbers
smiller5

More Related Content

What's hot (8)

Feb 26 Cartesian Planes 2
Feb 26 Cartesian Planes 2
ste ve
9706 accounting november 2009 grade thresholds ucles 2009 accounting
9706 accounting november 2009 grade thresholds ucles 2009 accounting
Alpro
Ecuaciones de la_elipse_1
Ecuaciones de la_elipse_1
jesquerrev1
Formula
Formula
saiful bahrin
Formulas
Formulas
ogonaga1992
Vectores operaciones blog01
Vectores operaciones blog01
Marta Mart鱈n
Garcia luismiguel actividad3_5
Garcia luismiguel actividad3_5
ProfLuisMiguelGarca
Maths ar. of triangles shubham n group
Maths ar. of triangles shubham n group
shubham jha
Feb 26 Cartesian Planes 2
Feb 26 Cartesian Planes 2
ste ve
9706 accounting november 2009 grade thresholds ucles 2009 accounting
9706 accounting november 2009 grade thresholds ucles 2009 accounting
Alpro
Ecuaciones de la_elipse_1
Ecuaciones de la_elipse_1
jesquerrev1
Vectores operaciones blog01
Vectores operaciones blog01
Marta Mart鱈n
Garcia luismiguel actividad3_5
Garcia luismiguel actividad3_5
ProfLuisMiguelGarca
Maths ar. of triangles shubham n group
Maths ar. of triangles shubham n group
shubham jha

Similar to Dk3162 app1 (20)

1. introduction to complex numbers
1. introduction to complex numbers
悴 悋惠悋慍
Complex%20numbers
Complex%20numbers
cshekhar5784
Complex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdf
d00a7ece
Complex Numbers
Complex Numbers
Arun Umrao
Complex analysis book by iit
Complex analysis book by iit
JITENDRA SUWASIYA
presentation.pptx
presentation.pptx
ahmed219190
Complex numbers org.ppt
Complex numbers org.ppt
Osama Tahir
Freecomplexnumbers
Freecomplexnumbers
MUSTAFA MABUTA
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
ThapeloTsepo1
Math20001 dec 2015
Math20001 dec 2015
Atef Alnazer
Complex numbers
Complex numbers
爐爛爐劇爐爐 爐爐爐逗ぎ爛
An introdcution to complex numbers jcw
An introdcution to complex numbers jcw
jenniech
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
bagariakartik123
1.3 Complex Numbers
1.3 Complex Numbers
smiller5
Complex Analysis 1.pptxComplex Analysis 1.pptx
Complex Analysis 1.pptxComplex Analysis 1.pptx
mayilcebrayilov15
Complex Analysis 1.pptxComplex Analysis 1.pptx
Complex Analysis 1.pptxComplex Analysis 1.pptx
mayilcebrayilov15
Ahlfors sol1
Ahlfors sol1
Monu Jangid
Algebra formulas
Algebra formulas
imran akbar
Complex numbers
Complex numbers
International advisers
Unit 6.6
Unit 6.6
Mark Ryder
1. introduction to complex numbers
1. introduction to complex numbers
悴 悋惠悋慍
Complex%20numbers
Complex%20numbers
cshekhar5784
Complex_Analysis_MIT.pdf
Complex_Analysis_MIT.pdf
d00a7ece
Complex Numbers
Complex Numbers
Arun Umrao
Complex analysis book by iit
Complex analysis book by iit
JITENDRA SUWASIYA
presentation.pptx
presentation.pptx
ahmed219190
Complex numbers org.ppt
Complex numbers org.ppt
Osama Tahir
Theme 4 Notes Complex Numbers (1).pdf
Theme 4 Notes Complex Numbers (1).pdf
ThapeloTsepo1
Math20001 dec 2015
Math20001 dec 2015
Atef Alnazer
An introdcution to complex numbers jcw
An introdcution to complex numbers jcw
jenniech
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
Maths short dhhdbrbdhd hdh hdb rh notes for JEE.pdf
bagariakartik123
1.3 Complex Numbers
1.3 Complex Numbers
smiller5
Complex Analysis 1.pptxComplex Analysis 1.pptx
Complex Analysis 1.pptxComplex Analysis 1.pptx
mayilcebrayilov15
Complex Analysis 1.pptxComplex Analysis 1.pptx
Complex Analysis 1.pptxComplex Analysis 1.pptx
mayilcebrayilov15
Algebra formulas
Algebra formulas
imran akbar
Ad

Recently uploaded (20)

Structured Programming with C++ :: Kjell Backman
Structured Programming with C++ :: Kjell Backman
Shabista Imam
Quiz on EV , made fun and progressive !!!
Quiz on EV , made fun and progressive !!!
JaishreeAsokanEEE
Intro際際滷s-June-GDG-Cloud-Munich community gathering@Netlight.pdf
Intro際際滷s-June-GDG-Cloud-Munich community gathering@Netlight.pdf
Luiz Carneiro
Decoding Kotlin - Your Guide to Solving the Mysterious in Kotlin - Devoxx PL ...
Decoding Kotlin - Your Guide to Solving the Mysterious in Kotlin - Devoxx PL ...
Jo達o Esperancinha
Introduction to Natural Language Processing - Stages in NLP Pipeline, Challen...
Introduction to Natural Language Processing - Stages in NLP Pipeline, Challen...
resming1
20CE404-Soil Mechanics - 際際滷 Share PPT
20CE404-Soil Mechanics - 際際滷 Share PPT
saravananr808639
362 Alec Data Center Solutions-Slysium Data Center-AUH-Adaptaflex.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-Adaptaflex.pdf
djiceramil
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
Learning Types of Machine Learning Supervised Learning Unsupervised UNI...
Learning Types of Machine Learning Supervised Learning Unsupervised UNI...
23Q95A6706
Pavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible Pavements
Sakthivel M
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
ravicivil
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
Stay Safe Women Security Android App Project Report.pdf
Stay Safe Women Security Android App Project Report.pdf
Kamal Acharya
Cadastral Maps
Cadastral Maps
Google
Microwatt: Open Tiny Core, Big Possibilities
Microwatt: Open Tiny Core, Big Possibilities
IBM
60 Years and Beyond eBook 1234567891.pdf
60 Years and Beyond eBook 1234567891.pdf
waseemalazzeh
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
Fran巽ois Garillot
Complete guidance book of Asp.Net Web API
Complete guidance book of Asp.Net Web API
Shabista Imam
Engineering Mechanics Introduction and its Application
Engineering Mechanics Introduction and its Application
Sakthivel M
Structured Programming with C++ :: Kjell Backman
Structured Programming with C++ :: Kjell Backman
Shabista Imam
Quiz on EV , made fun and progressive !!!
Quiz on EV , made fun and progressive !!!
JaishreeAsokanEEE
Intro際際滷s-June-GDG-Cloud-Munich community gathering@Netlight.pdf
Intro際際滷s-June-GDG-Cloud-Munich community gathering@Netlight.pdf
Luiz Carneiro
Decoding Kotlin - Your Guide to Solving the Mysterious in Kotlin - Devoxx PL ...
Decoding Kotlin - Your Guide to Solving the Mysterious in Kotlin - Devoxx PL ...
Jo達o Esperancinha
Introduction to Natural Language Processing - Stages in NLP Pipeline, Challen...
Introduction to Natural Language Processing - Stages in NLP Pipeline, Challen...
resming1
20CE404-Soil Mechanics - 際際滷 Share PPT
20CE404-Soil Mechanics - 際際滷 Share PPT
saravananr808639
362 Alec Data Center Solutions-Slysium Data Center-AUH-Adaptaflex.pdf
362 Alec Data Center Solutions-Slysium Data Center-AUH-Adaptaflex.pdf
djiceramil
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Abraham Silberschatz-Operating System Concepts (9th,2012.12).pdf
Shabista Imam
Learning Types of Machine Learning Supervised Learning Unsupervised UNI...
Learning Types of Machine Learning Supervised Learning Unsupervised UNI...
23Q95A6706
Pavement and its types, Application of rigid and Flexible Pavements
Pavement and its types, Application of rigid and Flexible Pavements
Sakthivel M
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
COMPOSITE COLUMN IN STEEL CONCRETE COMPOSITES.ppt
ravicivil
David Boutry - Mentors Junior Developers
David Boutry - Mentors Junior Developers
David Boutry
Stay Safe Women Security Android App Project Report.pdf
Stay Safe Women Security Android App Project Report.pdf
Kamal Acharya
Cadastral Maps
Cadastral Maps
Google
Microwatt: Open Tiny Core, Big Possibilities
Microwatt: Open Tiny Core, Big Possibilities
IBM
60 Years and Beyond eBook 1234567891.pdf
60 Years and Beyond eBook 1234567891.pdf
waseemalazzeh
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
362 Alec Data Center Solutions-Slysium Data Center-AUH-Glands & Lugs, Simplex...
djiceramil
Modern multi-proposer consensus implementations
Modern multi-proposer consensus implementations
Fran巽ois Garillot
Complete guidance book of Asp.Net Web API
Complete guidance book of Asp.Net Web API
Shabista Imam
Engineering Mechanics Introduction and its Application
Engineering Mechanics Introduction and its Application
Sakthivel M
Ad

Dk3162 app1

  • 1. APPENDIX 1 Introduction to Complex Numbers A complex number consists of a real (Re) and an imaginary (Im) part. For instance the complex number a 村 b 綻 jc has the real part Re 村 b and imaginary part Im 村 c, j 村 鍖鍖鍖鍖鍖鍖鍖 1 p . The complex number a can be presented in the complex number plane (Re, Im) as a two-dimensional vector with the length 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 綻 c2 p and angular orientation, measured from the axis Re, as arctan (c/b): a 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 綻 c2 p e j arctan c=b丹 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 綻 c2 p e j 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 綻 c2 p cos 綻 j sin 丹 丹A1:1 where arctan丹c=b (Figure A1.1). Note the important relationship, which ties complex number to trigonometric functions: e j 村 cos 綻 j sin Using this equation, for the specific angles the following relationships hold true: e j90 村 j, e j180 村 1, e j270 村 j, e j0 村 1 The exponential function e j can also be denoted exp ( j). A complex conjugate of the number a 村 b 綻 jc is a 村 b jc. Figure A1.1 Complex number as a vector in the complex number plane. 989 息 2005 by Taylor Francis Group, LLC
  • 2. Note that in engineering use of complex numbers the imaginary part of the complex number is often called quadrature, in order to avoid connotations with unreality. The real part of the complex number is called direct. Using Eq. (A1.1), the relationship between trigonometric and exponential functions can be derived as follows: cos 村 e j 綻 ej 2 , sin 村 e j ej 2j 村 j e j ej 2 The hyperbolic functions look somewhat similar to the above functions, but they do not involve complex numbers in their exponential functions. The hyperbolic sine and cosine are as follows: sin h 村 e e 2 , cos h 村 e 綻 e 2 The corresponding inverse functions are: 村 arcsin h丹A 村 ln A 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 A2 綻 1 p , 村 arccos h丹A 村 ln A 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 A2 1 p Similarly, the hyperbolic functions tangent and cotangent, and inverse functions arctan h, arccotan h, are introduced. The addition (subtraction) of two complex numbers, a1, a2 is as follows: a1 綻 a2 村 b1 綻 jc1 丹b2 綻 jc2 村 丹b1 b2 綻 j丹c1 c2 The addition (subtraction) of the complex numbers presented in the exponential format is as follows: A e j B e j
  • 3. 村 C e j where C 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 A2 綻 B2 2AB cos丹
  • 4. p , 村 arctan A sin B sin
  • 5. A cos B cos
  • 6. The multiplication of complex numbers is as follows: a1a2 村 丹b1 綻 jc1丹b2 綻 jc2 村 b1b2 c1c2 綻 j丹b1c2 綻 c1b2 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 1 綻 c2 1 q e j arctan丹c1=b1 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 2 綻 c2 2 q e j arctan丹c2=b2 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 丹b2 1 綻 c2 1丹b2 2 綻 c2 2 q e j arctan丹c1=b1綻arctan丹c2=b2遜 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 丹b2 1 綻 c2 1丹b2 2 綻 c2 2 q e j arctan 丹b1c2綻c1b2=丹b1b2c1c2遜 990 ROTORDYNAMICS 息 2005 by Taylor Francis Group, LLC
  • 7. The division of complex numbers is as follows: a1 a2 村 b1 綻 jc1 b2 綻 jc2 村 丹b1 綻 jc1丹b2 jc2 丹b2 綻 jc2丹b2 jc2 村 b1b2 綻 c1c2 綻 j丹c1b2 b1c2 b2 2 綻 c2 2 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 1 綻 c2 1 q 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 2 綻 c2 2 q e j arctan丹c1=b1arctan丹c2=b2遜 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 1 綻 c2 1 q 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 b2 2 綻 c2 2 q e j arctan 丹c1b2b1c2=丹b1b2綻c1c2遜 In the latter transformations the following trigonometric relationships were used (see also arctan A arctan B 村 arctan C, where A 村 c1=b1, B 村 c2=b2
  • 8. 村 , where A 村 tan , B 村 tan
  • 9. , C 村 tan tan丹
  • 10. 村 tan tan 村 tan tan
  • 11. 1 tan tan
  • 12. 村 A B 1 AB C 村 tan 村 丹c1=b1 丹c2=b2 1 丹丹c1c1=丹b1b2 村 c1b2 b1c2 b1b2 c1c2 A radical of a complex number is a complex number: 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a 綻 jb p 村 c 綻 jd a 綻 jb 村 c2 綻 2jcd d2 a 村 c2 d2 , b 村 2cd From these real and imaginary parts, the unknown c and d can be calculated: c2 b 2c 2 村 a, c4 ac2 b2 4 村 0 c 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 1 2 a 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 綻 b2 p r , d 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 1 2 a 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 綻 b2 p r Thus 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a 綻 jb p 村 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 1 2 a 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 綻 b2 p r 綻 j 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 1 2 a 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 綻 b2 p r The solution of a quadratic equation with complex coefficients, such as the characteristic equation of linear systems s2 綻 丹a 綻 jbs 綻 c 綻 jd 村 0 is as follows: s 村 a 綻 jb 2 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a 綻 jb 2 2 c jd s INTRODUCTION TO COMPLEX NUMBERS 991 息 2005 by Taylor Francis Group, LLC Appendix 6):
  • 13. and further, using the formulas developed above: s 村 a 2 1 鍖鍖鍖 2 p 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 b2 4 c 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 b2 4 c 2 綻 ab 2 d 2 sv u u t 2 6 4 3 7 5綻 j b 2 1 鍖鍖鍖 2 p 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 b2 4 綻 c 綻 鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖鍖 a2 b2 4 c 2 綻 ab 2 d 2 sv u u t 2 6 4 3 7 5 8 : 9 = ; There are four solutions resulting from four combinations of signs of the quadratic equation with complex numbers. These four solutions are actually two pairs of complex conjugate numbers. In vibration measurements, the use of complex numbers in the representation of measured amplitudes and phases of the vibration waveforms, filtered to specific frequencies, makes data processing easier. The amplitude A and phase are presented in the form of a complex vector, Ae j . In industry, the formal representation of measured amplitudes and phases are usually presented in the notation A鍖 (amplitude A at angle ) and for algebraic transformations, the formulas are given following the above formal derivation. This is often applied in the routines of the one- or two-plane balancing. 992 ROTORDYNAMICS 息 2005 by Taylor Francis Group, LLC