Mesos-based Data Infrastructure @ DoubanZhong Bo Tian
?
How to build an elastic and efficient platform to support various Big Data and Machine Learning tasks is a challenge for a lot of corporations. In this presentation, Zhongbo Tian will give an overview of the Mesos-based core infrastructure of Douban, and demonstrate how to integrate the platform with state-of-art Big Data/ML technologies.
The document provides an overview of new features in HDFS in Hadoop 2, including:
- A new appendable write pipeline that allows files to be reopened for append and provides primitives like hflush and hsync.
- Support for multiple namenode federation to improve scalability and isolate namespaces.
- Namenode high availability using techniques like ZooKeeper and a quorum journal manager to avoid single points of failure.
- A new file system snapshots feature that allows point-in-time recovery through copy-on-write snapshots without data copying.
The document discusses big data visualization and visual analysis, focusing on the challenges and opportunities. It begins with an overview of visualization and then discusses several challenges in big data visualization, including integrating heterogeneous data from different sources and scales, dealing with data and task complexity, limited interaction capabilities for large data, scalability for both data and users, and the need for domain and development libraries/tools. It then provides examples of visualizing taxi GPS data and traffic patterns in Beijing to identify traffic jams.
詹剑锋:Big databench—benchmarking big data systemshdhappy001
?
This document discusses BigDataBench, an open source project for big data benchmarking. BigDataBench includes six real-world data sets and 19 workloads that cover common big data applications and preserve the four V's of big data. The workloads were chosen to represent typical application domains like search engines, social networks, and e-commerce. BigDataBench aims to provide a standardized benchmark for evaluating big data systems, architectures, and software stacks. It has been used in several case studies for workload characterization and performance evaluation of different hardware platforms for big data workloads.
Cloud computing, big data, and mobile are three major trends that will change the world. Cloud computing provides scalable and elastic IT resources as services over the internet. Big data involves large amounts of both structured and unstructured data that can generate business insights when analyzed. The hadoop ecosystem, including components like HDFS, mapreduce, pig, and hive, provides an architecture for distributed storage and processing of big data across commodity hardware.
This document provides an overview of Capital One's plans to introduce Hadoop and discusses several proof of concepts (POCs) that could be developed. It summarizes the history and practices of using Hadoop at other companies like LinkedIn, Netflix, and Yahoo. It then outlines possible POCs for Hadoop distributions, ETL/analytics frameworks, performance testing, and developing a scaling layer. The goal is to contribute open source code and help with Capital One's transition to using Hadoop in production.
Cloud computing, big data, and mobile technologies are driving major changes in the IT world. Cloud computing provides scalable computing resources over the internet. Big data involves extremely large data sets that are analyzed to reveal business insights. Hadoop is an open-source software framework that allows distributed processing of big data across commodity hardware. It includes tools like HDFS for storage and MapReduce for distributed computing. The Hadoop ecosystem also includes additional tools for tasks like data integration, analytics, workflow management, and more. These emerging technologies are changing how businesses use and analyze data.
Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It consists of Hadoop Distributed File System (HDFS) for storage, and MapReduce for distributed processing. HDFS stores large files across multiple machines, with automatic replication of data for fault tolerance. It has a master/slave architecture with a NameNode managing the file system namespace and DataNodes storing file data blocks.
How do we manage more than one thousand of Pegasus clusters - engine partacelyc1112009
?
A presentation in Apache Pegasus meetup in 2021 from Guohao Li.
Apache Pegasus is a horizontally scalable, strongly consistent and high-performance key-value store.
Know more about Pegasus https://pegasus.apache.org, https://github.com/apache/incubator-pegasus
The document provides an overview of new features in HDFS in Hadoop 2, including:
- A new appendable write pipeline that allows files to be reopened for append and provides primitives like hflush and hsync.
- Support for multiple namenode federation to improve scalability and isolate namespaces.
- Namenode high availability using techniques like ZooKeeper and a quorum journal manager to avoid single points of failure.
- A new file system snapshots feature that allows point-in-time recovery through copy-on-write snapshots without data copying.
The document discusses big data visualization and visual analysis, focusing on the challenges and opportunities. It begins with an overview of visualization and then discusses several challenges in big data visualization, including integrating heterogeneous data from different sources and scales, dealing with data and task complexity, limited interaction capabilities for large data, scalability for both data and users, and the need for domain and development libraries/tools. It then provides examples of visualizing taxi GPS data and traffic patterns in Beijing to identify traffic jams.
詹剑锋:Big databench—benchmarking big data systemshdhappy001
?
This document discusses BigDataBench, an open source project for big data benchmarking. BigDataBench includes six real-world data sets and 19 workloads that cover common big data applications and preserve the four V's of big data. The workloads were chosen to represent typical application domains like search engines, social networks, and e-commerce. BigDataBench aims to provide a standardized benchmark for evaluating big data systems, architectures, and software stacks. It has been used in several case studies for workload characterization and performance evaluation of different hardware platforms for big data workloads.
Cloud computing, big data, and mobile are three major trends that will change the world. Cloud computing provides scalable and elastic IT resources as services over the internet. Big data involves large amounts of both structured and unstructured data that can generate business insights when analyzed. The hadoop ecosystem, including components like HDFS, mapreduce, pig, and hive, provides an architecture for distributed storage and processing of big data across commodity hardware.
This document provides an overview of Capital One's plans to introduce Hadoop and discusses several proof of concepts (POCs) that could be developed. It summarizes the history and practices of using Hadoop at other companies like LinkedIn, Netflix, and Yahoo. It then outlines possible POCs for Hadoop distributions, ETL/analytics frameworks, performance testing, and developing a scaling layer. The goal is to contribute open source code and help with Capital One's transition to using Hadoop in production.
Cloud computing, big data, and mobile technologies are driving major changes in the IT world. Cloud computing provides scalable computing resources over the internet. Big data involves extremely large data sets that are analyzed to reveal business insights. Hadoop is an open-source software framework that allows distributed processing of big data across commodity hardware. It includes tools like HDFS for storage and MapReduce for distributed computing. The Hadoop ecosystem also includes additional tools for tasks like data integration, analytics, workflow management, and more. These emerging technologies are changing how businesses use and analyze data.
Hadoop is an open-source software framework for distributed storage and processing of large datasets across clusters of computers. It consists of Hadoop Distributed File System (HDFS) for storage, and MapReduce for distributed processing. HDFS stores large files across multiple machines, with automatic replication of data for fault tolerance. It has a master/slave architecture with a NameNode managing the file system namespace and DataNodes storing file data blocks.
How do we manage more than one thousand of Pegasus clusters - engine partacelyc1112009
?
A presentation in Apache Pegasus meetup in 2021 from Guohao Li.
Apache Pegasus is a horizontally scalable, strongly consistent and high-performance key-value store.
Know more about Pegasus https://pegasus.apache.org, https://github.com/apache/incubator-pegasus
面對日新月異的大數據工具,有時候很難跟上這節奏。有鑑於此,Amazon Web Services提供了廣泛而完善的雲端運算服務組合,幫助您構建、維護和部署大數據應用程式。
這場線上研討會,將為各位深入淺出介紹AWS 雲端平台提供的各種大數據選項,包括現正流行的大數據框架,如Hadoop、Spark、NoSQL數據庫等,同時透過使用案例來瞭解最佳實踐方式。最後,您將了解如何應用這些工具服務,將大數據導入您的現實應用程式中。
How to continuously improve Apache Pegasus in complex toB scenariosacelyc1112009
?
A presentation in Apache Pegasus meetup in 2022 from Hao Wang.
Apache Pegasus is a horizontally scalable, strongly consistent and high-performance key-value store.
Know more about Pegasus https://pegasus.apache.org, https://github.com/apache/incubator-pegasus
Advanced Analytics and Machine Learning with Data Virtualization (Chinese)Denodo
?
Watch full webinar here: https://bit.ly/3mLNJ1J
Advanced data science techniques, like machine learning, have proven an extremely useful tool to derive valuable insights from existing data. Platforms like Spark, and complex libraries for R, Python and Scala put advanced techniques at the fingertips of the data scientists. However, these data scientists spent most of their time looking for the right data and massaging it into a usable format. Data virtualization offers a new alternative to address these issues in a more efficient and agile way.
Attend this webinar and learn:
- How data virtualization can accelerate data acquisition and massaging, providing the data scientist with a powerful tool to complement their practice
- How popular tools from the data science ecosystem: Spark, Python, Zeppelin, Jupyter, etc. integrate with Denodo
- How you can use the Denodo Platform with large data volumes in an efficient way
- How Prologis accelerated their use of Machine Learning with data virtualization
Spark is an open source cluster computing framework originally developed at UC Berkeley. Intel has made many contributions to Spark's development through code commits, patches, and collaborating with the Spark community. Spark is widely used by companies like Alibaba, Baidu, and Youku for large-scale data analytics and machine learning tasks. It allows for faster iterative jobs than Hadoop through its in-memory computing model and supports multiple workloads including streaming, SQL, and graph processing.
This document describes an interactive batch query system for game analytics based on Apache Drill. It addresses the problem of answering common ad-hoc queries over large volumes of log data by using a columnar data model and optimizing query plans. The system utilizes Drill's schema-free data model and vectorized query processing. It further improves performance by merging similar queries, reusing intermediate results, and pushing execution downwards to utilize multi-core CPUs. This provides a unified solution for both ad-hoc and scheduled batch analytics workloads at large scale.
刘诚忠:Running cloudera impala on postgre sqlhdhappy001
?
This document summarizes a presentation about running Cloudera Impala on PostgreSQL to enable SQL queries on large datasets. Key points:
- The company processes 3 billion daily ad impressions and 20TB of daily report data, requiring a scalable SQL solution.
- Impala was chosen for its fast performance from in-memory processing and code generation. The architecture runs Impala coordinators and executors across clusters.
- The author hacked Impala to also scan data from PostgreSQL for mixed workloads. This involved adding new scan node types and metadata.
- Tests on a 150 million row dataset showed Impala with PostgreSQL achieving 20 million rows scanned per second per core.
This document discusses big data in the cloud and provides an overview of YARN. It begins with introducing the speaker and their experience with VMware and Apache Hadoop. The rest of the document covers: 1) trends in big data like the rise of YARN, faster query engines, and focus on enterprise capabilities, 2) how YARN addresses limitations of MapReduce by splitting responsibilities, 3) how YARN serves as a hub for various big data applications, and 4) how YARN can integrate with cloud infrastructure for elastic resource management between the two frameworks. The document advocates for open source contribution to help advance big data technologies.
Raghu nambiar:industry standard benchmarkshdhappy001
?
Industry standard benchmarks have played a crucial role in advancing the computing industry by enabling healthy competition that drives product improvements and new technologies. Major benchmarking organizations like TPC, SPEC, and SPC have developed numerous benchmarks over time to keep up with industry needs. Looking ahead, new benchmarks are needed to address emerging technologies like cloud, big data, and the internet of things. International conferences and workshops bring together experts to collaborate on developing these new, relevant benchmarks.
Michael stack -the state of apache h basehdhappy001
?
The document provides an overview of Apache HBase, an open source, distributed, scalable, big data non-relational database. It discusses that HBase is modeled after Google's Bigtable and built on Hadoop for storage. It also summarizes that HBase is used by many large companies for applications such as messaging, real-time analytics, and search indexing. The project is led by an active community of committers and sees steady improvements and new features with each monthly release.
This document discusses the Stinger initiative to improve the performance of Apache Hive. Stinger aims to speed up Hive queries by 100x, scale queries from terabytes to petabytes of data, and expand SQL support. Key developments include optimizing Hive to run on Apache Tez, the vectorized query execution engine, cost-based optimization using Optiq, and performance improvements from the ORC file format. The goals of Stinger Phase 3 are to deliver interactive query performance for Hive by integrating these technologies.
Bikas saha:the next generation of hadoop– hadoop 2 and yarnhdhappy001
?
The document discusses Apache YARN, which is the next-generation resource management platform for Apache Hadoop. YARN was designed to address limitations of the original Hadoop 1 architecture by supporting multiple data processing models (e.g. batch, interactive, streaming) and improving cluster utilization. YARN achieves this by separating resource management from application execution, allowing various data processing engines like MapReduce, HBase and Storm to run natively on Hadoop frames. This provides a flexible, efficient and shared platform for distributed applications.