ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
DynamoDB?
Before and After GSI
2015-03-19?
Junya Hayashi (XICA Co., Ltd.)
Before GSI
? Hash key is ?xed on table
? Couldn t query on attributes ¡­
? So, many work arounds were invented to
query on tables.
parent key model
? By using parent object id as a hash key,
you can query target objects against a
primary object id
attributtes key
tenant_id hash key
user_id range key
name
age
query table model
? create extra table for query
? update both table on write
attributtes key
order_id hash key
user_id
created_at
updated_at
attributtes key
user_id hash key
updated_at range_key
order_id
created_at
Order UserOrderMap
After GSI?
Amazon released Global Secondary Index?
on December 2013
GSI
? GSI automatically manages query table
attributtes key
order_id hash key
user_id
created_at
updated_at
attributtes key
user_id hash key
updated_at range_key
order_id
created_at
Table GSI
write
RCU / WCU RCU / WCU
Eventually Consistent
Index Comparison
Hash?
Primary Key
Composite?
Primary Key
LSI GSI
key hash hash & range hash & range?
same hash key as table
hash & range?
any hash key
unique yes yes - -
write ok ok - -
scan & query scan only ok ok ok
attribute projection - -
KEYS_ONLY, INCLUDE, ALL

can fetch missing attributes
from the parent table
KEYS_ONLY, INCLUDE, ALL?
cannot fetch missing
attributes

consistency strong strong
strong /?
eventual
eventual
size limit - -
10GB?
per hash key
-
num limit - - 5 5
on the ?y - - - ok
throughput - -
shared with?
table

independent?
consume WCU for sync
[Coffee Break] CQRS
https://cqrs.?les.wordpress.com/2010/11/
cqrs_documents.pdf
? Greg Young s CQRS introduces
an architecture of separating
Read and Write models
? GSI is a small sample of
constructing read model
against a parant table
Conclusion
? Though there exists some limitations and
extra costs,
? Secondary Indices are very useful for query
model

More Related Content

Similar to DynamoDB Before and After GSI (20)

SharePoint goes Microsoft Graph
SharePoint goes Microsoft GraphSharePoint goes Microsoft Graph
SharePoint goes Microsoft Graph
Markus Moeller
?
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_WilkinsMongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
kiwilkins
?
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Chris Adamson
?
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'tsThe Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
Matias Cascallares
?
AWS Webcast - Dynamo DB
AWS Webcast - Dynamo DBAWS Webcast - Dynamo DB
AWS Webcast - Dynamo DB
Amazon Web Services
?
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon Web Services
?
Firebase: Totally Not Parse All Over Again (Unless It Is)
Firebase: Totally Not Parse All Over Again (Unless It Is)Firebase: Totally Not Parse All Over Again (Unless It Is)
Firebase: Totally Not Parse All Over Again (Unless It Is)
Chris Adamson
?
AWS Webcast - Build high-scale applications with Amazon DynamoDB
AWS Webcast - Build high-scale applications with Amazon DynamoDBAWS Webcast - Build high-scale applications with Amazon DynamoDB
AWS Webcast - Build high-scale applications with Amazon DynamoDB
Amazon Web Services
?
Test driving Azure Search and DocumentDB
Test driving Azure Search and DocumentDBTest driving Azure Search and DocumentDB
Test driving Azure Search and DocumentDB
Andrew Siemer
?
Y Boss External 20091017
Y Boss External 20091017Y Boss External 20091017
Y Boss External 20091017
JH Lee
?
Mongo db a deep dive of mongodb indexes
Mongo db  a deep dive of mongodb indexesMongo db  a deep dive of mongodb indexes
Mongo db a deep dive of mongodb indexes
Rajesh Kumar
?
An Evening with MongoDB - Orlando: Welcome and Keynote
An Evening with MongoDB - Orlando: Welcome and KeynoteAn Evening with MongoDB - Orlando: Welcome and Keynote
An Evening with MongoDB - Orlando: Welcome and Keynote
MongoDB
?
DynamodbDB Deep Dive
DynamodbDB Deep DiveDynamodbDB Deep Dive
DynamodbDB Deep Dive
Amazon Web Services
?
To Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT ToTo Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT To
SATOSHI TAGOMORI
?
From zero to Google APIs: Beyond search & AI... leverage all of Google
From zero to Google APIs: Beyond search & AI... leverage all of GoogleFrom zero to Google APIs: Beyond search & AI... leverage all of Google
From zero to Google APIs: Beyond search & AI... leverage all of Google
wesley chun
?
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
HBaseCon
?
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdfQlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
akilanarayanantechie
?
Big query
Big queryBig query
Big query
Tanvi Parikh
?
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Suman Srinivasan
?
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
Cloudera, Inc.
?
SharePoint goes Microsoft Graph
SharePoint goes Microsoft GraphSharePoint goes Microsoft Graph
SharePoint goes Microsoft Graph
Markus Moeller
?
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_WilkinsMongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
MongoDB Revised Sharding Guidelines MongoDB 3.x_Kimberly_Wilkins
kiwilkins
?
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Firebase: Totally Not Parse All Over Again (Unless It Is) (CocoaConf San Jose...
Chris Adamson
?
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'tsThe Fine Art of Schema Design in MongoDB: Dos and Don'ts
The Fine Art of Schema Design in MongoDB: Dos and Don'ts
Matias Cascallares
?
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon DynamoDB Deep Dive Advanced Design Patterns for DynamoDB (DAT401) - AW...
Amazon Web Services
?
Firebase: Totally Not Parse All Over Again (Unless It Is)
Firebase: Totally Not Parse All Over Again (Unless It Is)Firebase: Totally Not Parse All Over Again (Unless It Is)
Firebase: Totally Not Parse All Over Again (Unless It Is)
Chris Adamson
?
AWS Webcast - Build high-scale applications with Amazon DynamoDB
AWS Webcast - Build high-scale applications with Amazon DynamoDBAWS Webcast - Build high-scale applications with Amazon DynamoDB
AWS Webcast - Build high-scale applications with Amazon DynamoDB
Amazon Web Services
?
Test driving Azure Search and DocumentDB
Test driving Azure Search and DocumentDBTest driving Azure Search and DocumentDB
Test driving Azure Search and DocumentDB
Andrew Siemer
?
Y Boss External 20091017
Y Boss External 20091017Y Boss External 20091017
Y Boss External 20091017
JH Lee
?
Mongo db a deep dive of mongodb indexes
Mongo db  a deep dive of mongodb indexesMongo db  a deep dive of mongodb indexes
Mongo db a deep dive of mongodb indexes
Rajesh Kumar
?
An Evening with MongoDB - Orlando: Welcome and Keynote
An Evening with MongoDB - Orlando: Welcome and KeynoteAn Evening with MongoDB - Orlando: Welcome and Keynote
An Evening with MongoDB - Orlando: Welcome and Keynote
MongoDB
?
To Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT ToTo Have Own Data Analytics Platform, Or NOT To
To Have Own Data Analytics Platform, Or NOT To
SATOSHI TAGOMORI
?
From zero to Google APIs: Beyond search & AI... leverage all of Google
From zero to Google APIs: Beyond search & AI... leverage all of GoogleFrom zero to Google APIs: Beyond search & AI... leverage all of Google
From zero to Google APIs: Beyond search & AI... leverage all of Google
wesley chun
?
HBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at DidiHBaseCon2017 Apache HBase at Didi
HBaseCon2017 Apache HBase at Didi
HBaseCon
?
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdfQlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
Qlik_Sense_May_2023_Viz_update_1683564048dddddddd.pdf
akilanarayanantechie
?
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Real-Time Video Analytics Using Hadoop and HBase (HBaseCon 2013)
Suman Srinivasan
?
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
HBaseCon 2013: Apache Hadoop and Apache HBase for Real-Time Video Analytics
Cloudera, Inc.
?

More from Junya Hayashi (11)

Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤íPython ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Junya Hayashi
?
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
Junya Hayashi
?
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
Junya Hayashi
?
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨ÔòÁ¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Junya Hayashi
?
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
Junya Hayashi
?
±«·Ö²¼¤ÈÓîÖæ
±«·Ö²¼¤ÈÓîÖ汫·Ö²¼¤ÈÓîÖæ
±«·Ö²¼¤ÈÓîÖæ
Junya Hayashi
?
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Junya Hayashi
?
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
Junya Hayashi
?
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
Junya Hayashi
?
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
Junya Hayashi
?
Cross2013_GREE
Cross2013_GREECross2013_GREE
Cross2013_GREE
Junya Hayashi
?
Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤íPython ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Python ¤Ë¤ª¤±¤ë¥É¥á¥¤¥óñl„ÓÔOÓ‹(‘éÐgÃæ)¤Î¿±¤É¤³¤í
Junya Hayashi
?
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
¶ÏÑÔ¤·¤Æ¼äÎ¥¤¨¤ë¤ÈÐÅîm¶È¤«?µÍϤ¹¤ë¤È¤¤¤¦¥Ø?¥¤¥¹?¤Î»°
Junya Hayashi
?
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
¥Ò¥­¥«?¥¨¥ë¤ÏµØÕð¤òÓèÖª¤¹¤ë¤Î¤«
Junya Hayashi
?
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨ÔòÁ¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Á¿¤«¤éÖʤؤÎÜž»¯¤Î·¨Ôò
Junya Hayashi
?
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
±õ°ÕÒµ½ç¤Î¼Çʤ˼û¤é¤ì¤ë¡¸ÖÐÈÕ¥È?¥é¥³?¥ó¥¹?¤ÎÂÛÀí¡¹¤ÎÂä¤È¤·Ñ¨
Junya Hayashi
?
±«·Ö²¼¤ÈÓîÖæ
±«·Ö²¼¤ÈÓîÖ汫·Ö²¼¤ÈÓîÖæ
±«·Ö²¼¤ÈÓîÖæ
Junya Hayashi
?
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Pyramid + socket.io ÈËÀǤò×÷¤Ã¤Æ¤ß¤¿
Junya Hayashi
?
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
¥«¥¿¥ó¤ÎÁ÷¤ì¤ò—ÊÔ^¤·¤Æ¤ß¤¿
Junya Hayashi
?
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
¥µ¥ó¥¯¥È¥Ø?¥Æ¥ë¥Õ?¥ë¥¯¤Î¥Ï?¥é¥È?¥Ã¥¯¥¹
Junya Hayashi
?
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
¥µ¥¤¥³¥í¤ò100Íò»ØÕñ¤Ã¤Æ¤ß¤¿
Junya Hayashi
?

Recently uploaded (20)

Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
elucidata1
?
salesforce development services - Alt digital
salesforce development services - Alt digitalsalesforce development services - Alt digital
salesforce development services - Alt digital
Alt Digital Technologies
?
Ship Show Ask at Lean Agile Edinburgh 2025
Ship Show Ask at Lean Agile Edinburgh 2025Ship Show Ask at Lean Agile Edinburgh 2025
Ship Show Ask at Lean Agile Edinburgh 2025
rouanw
?
VADY: Revolutionizing Business Intelligence with AI-Powered Insights
VADY: Revolutionizing Business Intelligence with AI-Powered InsightsVADY: Revolutionizing Business Intelligence with AI-Powered Insights
VADY: Revolutionizing Business Intelligence with AI-Powered Insights
NewFangledVision
?
Wondershare Filmora Crack 2025 + Key Free Download
Wondershare Filmora Crack 2025 + Key Free DownloadWondershare Filmora Crack 2025 + Key Free Download
Wondershare Filmora Crack 2025 + Key Free Download
nasirali027m
?
About Us ¨C What is Data Protection Data Protection Consultancy.pdf
About Us ¨C What is Data Protection  Data Protection Consultancy.pdfAbout Us ¨C What is Data Protection  Data Protection Consultancy.pdf
About Us ¨C What is Data Protection Data Protection Consultancy.pdf
Data Protection People
?
Why Choose XongoLab for OTT Platform Development
Why Choose XongoLab for OTT Platform DevelopmentWhy Choose XongoLab for OTT Platform Development
Why Choose XongoLab for OTT Platform Development
XongoLab Technologies LLP
?
Best Solution For Import and Export Contacts from VCF to CSV
Best Solution For Import and Export Contacts from VCF to CSVBest Solution For Import and Export Contacts from VCF to CSV
Best Solution For Import and Export Contacts from VCF to CSV
sung231
?
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio, Inc.
?
A Brief Introduction About Raman Bhaumik
A Brief Introduction About Raman BhaumikA Brief Introduction About Raman Bhaumik
A Brief Introduction About Raman Bhaumik
Raman Bhaumik
?
Web Development Services by Icubetechnolabs.pdf
Web Development Services by Icubetechnolabs.pdfWeb Development Services by Icubetechnolabs.pdf
Web Development Services by Icubetechnolabs.pdf
ICUBETECHNOLABS
?
Symantec Endpoint Protection Presentation ºÝºÝߣ
Symantec Endpoint Protection Presentation ºÝºÝߣSymantec Endpoint Protection Presentation ºÝºÝߣ
Symantec Endpoint Protection Presentation ºÝºÝߣ
VLODI
?
Top 10 Pivotal Tracker Alternatives in 2025
Top 10 Pivotal Tracker Alternatives in 2025Top 10 Pivotal Tracker Alternatives in 2025
Top 10 Pivotal Tracker Alternatives in 2025
Orangescrum
?
LLM Security - Smart to protect, but too smart to be protected
LLM Security - Smart to protect, but too smart to be protectedLLM Security - Smart to protect, but too smart to be protected
LLM Security - Smart to protect, but too smart to be protected
Ivo Andreev
?
SAP Document Compliance Overview -Imp document.pdf
SAP Document Compliance Overview -Imp document.pdfSAP Document Compliance Overview -Imp document.pdf
SAP Document Compliance Overview -Imp document.pdf
annapureddyn
?
The Role of Blockchain in Transparent & Secure Procurement.pptx
The Role of Blockchain in Transparent & Secure Procurement.pptxThe Role of Blockchain in Transparent & Secure Procurement.pptx
The Role of Blockchain in Transparent & Secure Procurement.pptx
asmith539880
?
OutSystems User Group Utrecht February 2025.pdf
OutSystems User Group Utrecht February 2025.pdfOutSystems User Group Utrecht February 2025.pdf
OutSystems User Group Utrecht February 2025.pdf
mail496323
?
M251_Meeting 5 (Inheritance and Polymorphism).ppt
M251_Meeting 5 (Inheritance and Polymorphism).pptM251_Meeting 5 (Inheritance and Polymorphism).ppt
M251_Meeting 5 (Inheritance and Polymorphism).ppt
smartashammari
?
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Shubham Joshi
?
Benefits of flutter development reasons to choose in 2025.pptx
Benefits of flutter development reasons to choose in 2025.pptxBenefits of flutter development reasons to choose in 2025.pptx
Benefits of flutter development reasons to choose in 2025.pptx
seo02siddhiinfosoft
?
Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
Breaking Barriers in the use of Biomedical Data- Multi-modal Data Management....
elucidata1
?
salesforce development services - Alt digital
salesforce development services - Alt digitalsalesforce development services - Alt digital
salesforce development services - Alt digital
Alt Digital Technologies
?
Ship Show Ask at Lean Agile Edinburgh 2025
Ship Show Ask at Lean Agile Edinburgh 2025Ship Show Ask at Lean Agile Edinburgh 2025
Ship Show Ask at Lean Agile Edinburgh 2025
rouanw
?
VADY: Revolutionizing Business Intelligence with AI-Powered Insights
VADY: Revolutionizing Business Intelligence with AI-Powered InsightsVADY: Revolutionizing Business Intelligence with AI-Powered Insights
VADY: Revolutionizing Business Intelligence with AI-Powered Insights
NewFangledVision
?
Wondershare Filmora Crack 2025 + Key Free Download
Wondershare Filmora Crack 2025 + Key Free DownloadWondershare Filmora Crack 2025 + Key Free Download
Wondershare Filmora Crack 2025 + Key Free Download
nasirali027m
?
About Us ¨C What is Data Protection Data Protection Consultancy.pdf
About Us ¨C What is Data Protection  Data Protection Consultancy.pdfAbout Us ¨C What is Data Protection  Data Protection Consultancy.pdf
About Us ¨C What is Data Protection Data Protection Consultancy.pdf
Data Protection People
?
Why Choose XongoLab for OTT Platform Development
Why Choose XongoLab for OTT Platform DevelopmentWhy Choose XongoLab for OTT Platform Development
Why Choose XongoLab for OTT Platform Development
XongoLab Technologies LLP
?
Best Solution For Import and Export Contacts from VCF to CSV
Best Solution For Import and Export Contacts from VCF to CSVBest Solution For Import and Export Contacts from VCF to CSV
Best Solution For Import and Export Contacts from VCF to CSV
sung231
?
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio Webinar | What¡¯s New in Alluxio AI: 3X Faster Checkpoint File Creatio...
Alluxio, Inc.
?
A Brief Introduction About Raman Bhaumik
A Brief Introduction About Raman BhaumikA Brief Introduction About Raman Bhaumik
A Brief Introduction About Raman Bhaumik
Raman Bhaumik
?
Web Development Services by Icubetechnolabs.pdf
Web Development Services by Icubetechnolabs.pdfWeb Development Services by Icubetechnolabs.pdf
Web Development Services by Icubetechnolabs.pdf
ICUBETECHNOLABS
?
Symantec Endpoint Protection Presentation ºÝºÝߣ
Symantec Endpoint Protection Presentation ºÝºÝߣSymantec Endpoint Protection Presentation ºÝºÝߣ
Symantec Endpoint Protection Presentation ºÝºÝߣ
VLODI
?
Top 10 Pivotal Tracker Alternatives in 2025
Top 10 Pivotal Tracker Alternatives in 2025Top 10 Pivotal Tracker Alternatives in 2025
Top 10 Pivotal Tracker Alternatives in 2025
Orangescrum
?
LLM Security - Smart to protect, but too smart to be protected
LLM Security - Smart to protect, but too smart to be protectedLLM Security - Smart to protect, but too smart to be protected
LLM Security - Smart to protect, but too smart to be protected
Ivo Andreev
?
SAP Document Compliance Overview -Imp document.pdf
SAP Document Compliance Overview -Imp document.pdfSAP Document Compliance Overview -Imp document.pdf
SAP Document Compliance Overview -Imp document.pdf
annapureddyn
?
The Role of Blockchain in Transparent & Secure Procurement.pptx
The Role of Blockchain in Transparent & Secure Procurement.pptxThe Role of Blockchain in Transparent & Secure Procurement.pptx
The Role of Blockchain in Transparent & Secure Procurement.pptx
asmith539880
?
OutSystems User Group Utrecht February 2025.pdf
OutSystems User Group Utrecht February 2025.pdfOutSystems User Group Utrecht February 2025.pdf
OutSystems User Group Utrecht February 2025.pdf
mail496323
?
M251_Meeting 5 (Inheritance and Polymorphism).ppt
M251_Meeting 5 (Inheritance and Polymorphism).pptM251_Meeting 5 (Inheritance and Polymorphism).ppt
M251_Meeting 5 (Inheritance and Polymorphism).ppt
smartashammari
?
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Mastering Software Test Automation: A Comprehensive Guide for Beginners and E...
Shubham Joshi
?
Benefits of flutter development reasons to choose in 2025.pptx
Benefits of flutter development reasons to choose in 2025.pptxBenefits of flutter development reasons to choose in 2025.pptx
Benefits of flutter development reasons to choose in 2025.pptx
seo02siddhiinfosoft
?

DynamoDB Before and After GSI

  • 1. DynamoDB? Before and After GSI 2015-03-19? Junya Hayashi (XICA Co., Ltd.)
  • 3. ? Hash key is ?xed on table ? Couldn t query on attributes ¡­ ? So, many work arounds were invented to query on tables.
  • 4. parent key model ? By using parent object id as a hash key, you can query target objects against a primary object id attributtes key tenant_id hash key user_id range key name age
  • 5. query table model ? create extra table for query ? update both table on write attributtes key order_id hash key user_id created_at updated_at attributtes key user_id hash key updated_at range_key order_id created_at Order UserOrderMap
  • 6. After GSI? Amazon released Global Secondary Index? on December 2013
  • 7. GSI ? GSI automatically manages query table attributtes key order_id hash key user_id created_at updated_at attributtes key user_id hash key updated_at range_key order_id created_at Table GSI write RCU / WCU RCU / WCU Eventually Consistent
  • 8. Index Comparison Hash? Primary Key Composite? Primary Key LSI GSI key hash hash & range hash & range? same hash key as table hash & range? any hash key unique yes yes - - write ok ok - - scan & query scan only ok ok ok attribute projection - - KEYS_ONLY, INCLUDE, ALL can fetch missing attributes from the parent table KEYS_ONLY, INCLUDE, ALL? cannot fetch missing attributes consistency strong strong strong /? eventual eventual size limit - - 10GB? per hash key - num limit - - 5 5 on the ?y - - - ok throughput - - shared with? table independent? consume WCU for sync
  • 9. [Coffee Break] CQRS https://cqrs.?les.wordpress.com/2010/11/ cqrs_documents.pdf ? Greg Young s CQRS introduces an architecture of separating Read and Write models ? GSI is a small sample of constructing read model against a parant table
  • 10. Conclusion ? Though there exists some limitations and extra costs, ? Secondary Indices are very useful for query model