際際滷

際際滷Share a Scribd company logo
-足	
 1	
 -足	
 
Two-足dimensional	
 Transi/on	
 Metal	
 
Carbides	
 Produced	
 by	
 Exfolia/on	
 of	
 
MAX	
 Phases	
 
Yury	
 Gogotsi	
 &	
 Michel	
 Barsoum	
 
Students:	
 
Michael	
 Naguib,	
 Olha	
 Mashtalir,	
 Murat	
 Kurtoglu	
 	
 
Drexel	
 University	
 
AJ	
 Drexel	
 Nanotechnology	
 Ins7tute	
 	
 
Materials	
 Science	
 and	
 Engineering	
 Department	
 
Philadelphia,	
 Pennsylvania	
 
NSF/AFOSR	
 Workshop	
 on	
 2D	
 Materials	
 Beyond	
 Graphene,	
 	
 
May	
 30-足31,	
 2012
-足	
 2	
 -足	
 
2	
 
M
X
A
M
 Composition of
Mn+1AXn ; with n
=1,2,3
 Ternary metals carbides
and/or nitrides
 Layered hexagonal
structure (P63/mmc)
 Examples: Ti2AlC, Ti2AlN, Ti3AlC2,Ti4AlN3 Ta2AlC,
Ta4AlC3 Cr2AlC, Cr3AlC2 V2AlC, V3AlC2 Nb2AlC,
Nb4AlC3 (>60 phases) (Ti0.5Nb0.5)2AlC, Ti3Al(C0.5N0.5)2
(considering solid solution, there will be more)
Barsoum, M.W. Progress in Solid State Chemistry 28 (2000) 201  281 211 312 413
MAX	
 Phases	
 
Strong but Ductile Ceramics - not van der Waals Solids
-足	
 3	
 -足	
 
MAX	
 phase	
 
MAX	
 phases	
 are	
 layered	
 ternary	
 
carbides,	
 nitrides,	
 and	
 carbonitrides	
 
consisJng	
 of	
 M,	
 A,	
 and	
 X	
 layers	
 	
 
SelecJve	
 etching	
 only	
 of	
 the	
 A	
 
layers	
 from	
 the	
 MAX	
 phase	
 
MXene	
 sheets	
 
Physically	
 separated	
 2-足D	
 MXene	
 
sheets	
 aOer	
 sonicaJon	
 
Summary	
 
Schematic of Solution Synthesis
-足	
 4	
 -足	
 
HF	
 
T
reatment
	
 
O	
 
C	
 
H	
 
Al	
 
Ti	
 
Sonica/on
	
 
Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253
MAX MAX MXene
The Solution Approach to Ti3AlC2
Exfoliation and Dispersion
Ti3AlC2 in HF 50% for 2 hours at room temperature, then sonication
M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253
Ti3AlC2 HF 50% for 2 hours at room temperature
 After HF treatment, the most
intense peak of Ti3AlC2 vanished.
 XRD after HF treatment
matches with DFT simulated
Ti3C2(OH)2.
 Sonication results in weakening
the intensity of the peaks (losing
the crystalline ordering).
XRD Analysis of MAX and MXene
Raman Spectra of MAX and MXene
100 200 300 400 500 600 700 800
Intensity
(I)
(II) (IV)
(V)
(III) (VI)
Raman shift (cm-1)
Ti3AlC2
HF etched	
 
Ti3AlC2 etched in 50% HF for 2 hours at room
temperature
Raman spectroscopy: 514.5 nm excitation
M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253
V. Presser, M. Naguib, et al. J. Raman Spectroscopy 43 (2011) 168-172.
-足	
 7	
 -足	
 
Ti3AlC2 etched in HF 50% for
2 hours at room temperature:
2 袖m
M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253
L. M. Viculis, et al., Journal of Materials Chemistry 15 (2005) 974-978.
Exfoliated Graphite
SEM	
 Images	
 of	
 MXene
-足	
 8	
 -足	
 
Science 2012 Vol. 335,
pp 526-527
Peoples choice award
for International Science
& Engineering
Visualization Challenge
from NSF, 2012.
MXene on the Cover
-足	
 9	
 -足	
 
Ti3AlC2 treated in HF 50% for 2 hours at
room temperature, then sonication
Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253
TEM	
 Analysis	
 of	
 Ti3C2
-足	
 10	
 -足	
 
5 nm
R<20nm
5 nm
Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253
Ti3AlC2 in 50%-HF for 2 hours at room temperature, then
sonication
MXene Scrolls/Nanotubes
MXene shows behavior typical of graphene
or other 2-D materials
-足	
 11	
 -足	
 
4 袖m 3 袖m
1 袖m
2 袖m
1 袖m
1 袖m
As	
 received	
  Ti3C2	
  Ti2C	
 
(Ti0.5Nb0.5)2C	
 	
  Ti3(C0.5N0.5	
 )2	
 
Ta4C3	
 	
 
Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331
MXenes  A Large Family of Transition Metal
Carbides and/or Nitrides
Several MAX phases have been exfoliated, producing MXenes
-足	
 12	
 -足	
 
Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331
40nm
1 2 3
20nm
50nm
50nm
Ti3C2	
  Ti3(C0.5N0.5	
 )2	
 
(Ti0.5Nb0.5)2C	
 	
  Ta4C3	
 	
 
MXenes  A Large Family of Transition Metal
Carbides and/or Nitrides
-足	
 13	
 -足	
 
M. Naguib, et al. ACS Nano 6 (2012) 1322-1331
HR TEM and SAD of Ta4C3
1100	
 
0110	
 
1010	
 
1120	
  1210	
 
2110	
 
5	
 1/nm	
 
20	
 nm	
 
1.325	
 nm	
 
13	
 
2	
 nm	
 
0.269	
 nm	
 
(0110)	
 
0.155	
 nm	
 
(2110)	
 
60属	
 
 Crystalline structure is
maintained within the layer
 MXene layers are in registry
in multilayer structures
-足	
 14	
 -足	
 
10袖m
10袖m
Ta4C3 flakes Ti3CN
Individual (multi)layers are optically
transparent under visible light
Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331
Light Microscopy of MXenes
-足	
 15	
 -足	
 
Ti3C2(OH)2:	
 OH	
 terminated	
 	
 
Ti3C2	
 nanosheets	
 
Ti3C2:	
 Bare	
 layers,	
 	
 
no	
 termina/ons	
 	
 
Ti3C2F2:	
 F-足terminated	
 	
 
Ti3C2	
 nanosheets	
 
Semiconductor	
 
(0.05	
 eV	
 bandgap)	
 
Semiconductor	
 
(0.1	
 eV	
 bandgap)	
 
Metal	
 
M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253
Electronic Structure of MXenes
DFT implemented in the CASTEP code in
Material Studio software (Version 4.5)
-足	
 16	
 -足	
 
Ti2C Ta4C3 (Ti0.5Nb0.5)2C Ti3(C0.5N0.5)2
R: 330 立/ 104 立/ 171 立/ 125 立/
CA: 32属 41属 31属 27属
Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331
 MXene can be cold pressed in the form of thin (300 袖m) free-
standing discs.
 Resistivity is comparable to multi-layer graphene.
 Contact angle measurements of water showed hydrophilic
behavior.
25mm
Wetting and Conductivity
-足	
 17	
 -足	
 
0
0.5
1
1.5
2
2.5
0 100 200 300 400 500
Q disch Cycle 1
Q ch Cycle 1
Q disch Cycle 2
Q ch Cycle 2
Q disch Cycle 20
Q ch Cycle 20
Q disch Cycle 25
Q ch Cycle 25
0 0.5 1 1.5 2
Potential
(V
vs.
Li/Li
+
)
Specific Capacity (mAh揃g
-1
)
Number of Inserted Li in the Structure (y)
1st
2nd
20-25
0
100
200
300
400
500
600
0 20 40 60 80 100 120
Data 31 4:08:31 PM 11/30/2011
Q discharg (C/25)
Q charg (C/25)
Qdischarge (C/6)
Qcharge (C/6)
Qdischarge (1C)
Qcharge (1C/)
Qdischarge (3C)
Qcharge (3C)
Qdischarge (10C)
Qcharge (10C)
Specific
Capacity
(mAh揃g
-1
)
Cycle Number
0
100
200
300
400
500
600
0 5 10 15 20
Data 31 8:36:44 PM 11/3/2011
Q discharg (C/25)
Q charg (C/25)
Qdischarge (C/6)
Qcharge (C/6)
Qdischarge (1C)
Qcharge (1C/)
Qdischarge (3C)
Qcharge (3C)
Qdischarge (10C)
Qcharge (10C)
3C
1C
C/6
C/25
C/6
C/25
1C
3C & 10C
10C
Ti2COx based anode  properties similar to lithium
titanate anodes
M. Naguib, et al. Electrochemistry Communications 16 (2012) 61-64
MXene	
 as	
 a	
 Li-足ion	
 Ba[ery	
 Anode
-足	
 18	
 -足	
 
 SelecJve	
 etching	
 of	
 A	
 layer	
 from	
 MAX	
 phases	
 results	
 in	
 the	
 
formaJon	
 of	
 2-足D	
 transiJon	
 metals	
 carbides	
 and/or	
 nitrides	
 called	
 
MXenes	
 	
 
 Band	
 gap	
 of	
 MXene	
 predicted	
 to	
 change	
 with	
 the	
 surface	
 chemistry	
 	
 
 Excellent	
 mechanical	
 properJes	
 predicted	
 (DFT)	
 
 Su鍖ciently	
 ducJle	
 for	
 cold	
 pressing	
 	
 
 ConducJvity	
 comparable	
 to	
 mulJ-足layer	
 graphene	
 
 Hydrophilic	
 (contact	
 angle	
 30-足40属)	
 	
 
 Li	
 inserJon	
 allows	
 use	
 in	
 Li-足ion	
 ba[ery	
 anodes	
 	
 
Summary of the Data to Date
-足	
 19	
 -足	
 
 Electrical	
 energy	
 storage	
 
Pseudocapacitors,	
 Lithium	
 ion	
 ba[eries,	
 Hybrid	
 devices	
 
 Composite	
 materials	
 
ConducJve,	
 high-足strength,	
 low-足permeability	
 polymers,	
 high	
 
strength	
 and	
 high	
 toughness	
 ceramic-足metal	
 composites	
 	
 
 Sensors	
 
 2-足D	
 and	
 鍖exible	
 electronics	
 
	
 
Potential Applications
M2X	
 
M3X2	
 
M4X3
-足	
 20	
 -足	
 
Acknowledgments
J辿r辿my Come & Patrice Simon, Universit辿 Paul Sabatier, Toulouse, France
Jun Lu & Lars Hultman, Linkoping University, Sweden
Gogotsi Nanomaterials Group
Barsoum MAX Phase Group
BATT Program

More Related Content

Gogotsi-Yury.pdfCO2 ReductionCO2 Reduction

  • 1. -足 1 -足 Two-足dimensional Transi/on Metal Carbides Produced by Exfolia/on of MAX Phases Yury Gogotsi & Michel Barsoum Students: Michael Naguib, Olha Mashtalir, Murat Kurtoglu Drexel University AJ Drexel Nanotechnology Ins7tute Materials Science and Engineering Department Philadelphia, Pennsylvania NSF/AFOSR Workshop on 2D Materials Beyond Graphene, May 30-足31, 2012
  • 2. -足 2 -足 2 M X A M Composition of Mn+1AXn ; with n =1,2,3 Ternary metals carbides and/or nitrides Layered hexagonal structure (P63/mmc) Examples: Ti2AlC, Ti2AlN, Ti3AlC2,Ti4AlN3 Ta2AlC, Ta4AlC3 Cr2AlC, Cr3AlC2 V2AlC, V3AlC2 Nb2AlC, Nb4AlC3 (>60 phases) (Ti0.5Nb0.5)2AlC, Ti3Al(C0.5N0.5)2 (considering solid solution, there will be more) Barsoum, M.W. Progress in Solid State Chemistry 28 (2000) 201 281 211 312 413 MAX Phases Strong but Ductile Ceramics - not van der Waals Solids
  • 3. -足 3 -足 MAX phase MAX phases are layered ternary carbides, nitrides, and carbonitrides consisJng of M, A, and X layers SelecJve etching only of the A layers from the MAX phase MXene sheets Physically separated 2-足D MXene sheets aOer sonicaJon Summary Schematic of Solution Synthesis
  • 4. -足 4 -足 HF T reatment O C H Al Ti Sonica/on Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253 MAX MAX MXene The Solution Approach to Ti3AlC2 Exfoliation and Dispersion Ti3AlC2 in HF 50% for 2 hours at room temperature, then sonication
  • 5. M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253 Ti3AlC2 HF 50% for 2 hours at room temperature After HF treatment, the most intense peak of Ti3AlC2 vanished. XRD after HF treatment matches with DFT simulated Ti3C2(OH)2. Sonication results in weakening the intensity of the peaks (losing the crystalline ordering). XRD Analysis of MAX and MXene
  • 6. Raman Spectra of MAX and MXene 100 200 300 400 500 600 700 800 Intensity (I) (II) (IV) (V) (III) (VI) Raman shift (cm-1) Ti3AlC2 HF etched Ti3AlC2 etched in 50% HF for 2 hours at room temperature Raman spectroscopy: 514.5 nm excitation M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253 V. Presser, M. Naguib, et al. J. Raman Spectroscopy 43 (2011) 168-172.
  • 7. -足 7 -足 Ti3AlC2 etched in HF 50% for 2 hours at room temperature: 2 袖m M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253 L. M. Viculis, et al., Journal of Materials Chemistry 15 (2005) 974-978. Exfoliated Graphite SEM Images of MXene
  • 8. -足 8 -足 Science 2012 Vol. 335, pp 526-527 Peoples choice award for International Science & Engineering Visualization Challenge from NSF, 2012. MXene on the Cover
  • 9. -足 9 -足 Ti3AlC2 treated in HF 50% for 2 hours at room temperature, then sonication Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253 TEM Analysis of Ti3C2
  • 10. -足 10 -足 5 nm R<20nm 5 nm Michael Naguib, et al. Advanced Materials 23 (2011) 4248-4253 Ti3AlC2 in 50%-HF for 2 hours at room temperature, then sonication MXene Scrolls/Nanotubes MXene shows behavior typical of graphene or other 2-D materials
  • 11. -足 11 -足 4 袖m 3 袖m 1 袖m 2 袖m 1 袖m 1 袖m As received Ti3C2 Ti2C (Ti0.5Nb0.5)2C Ti3(C0.5N0.5 )2 Ta4C3 Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331 MXenes A Large Family of Transition Metal Carbides and/or Nitrides Several MAX phases have been exfoliated, producing MXenes
  • 12. -足 12 -足 Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331 40nm 1 2 3 20nm 50nm 50nm Ti3C2 Ti3(C0.5N0.5 )2 (Ti0.5Nb0.5)2C Ta4C3 MXenes A Large Family of Transition Metal Carbides and/or Nitrides
  • 13. -足 13 -足 M. Naguib, et al. ACS Nano 6 (2012) 1322-1331 HR TEM and SAD of Ta4C3 1100 0110 1010 1120 1210 2110 5 1/nm 20 nm 1.325 nm 13 2 nm 0.269 nm (0110) 0.155 nm (2110) 60属 Crystalline structure is maintained within the layer MXene layers are in registry in multilayer structures
  • 14. -足 14 -足 10袖m 10袖m Ta4C3 flakes Ti3CN Individual (multi)layers are optically transparent under visible light Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331 Light Microscopy of MXenes
  • 15. -足 15 -足 Ti3C2(OH)2: OH terminated Ti3C2 nanosheets Ti3C2: Bare layers, no termina/ons Ti3C2F2: F-足terminated Ti3C2 nanosheets Semiconductor (0.05 eV bandgap) Semiconductor (0.1 eV bandgap) Metal M. Naguib, et al. Advanced Materials 23 (2011) 4248-4253 Electronic Structure of MXenes DFT implemented in the CASTEP code in Material Studio software (Version 4.5)
  • 16. -足 16 -足 Ti2C Ta4C3 (Ti0.5Nb0.5)2C Ti3(C0.5N0.5)2 R: 330 立/ 104 立/ 171 立/ 125 立/ CA: 32属 41属 31属 27属 Michael Naguib, et al. ACS Nano 6 (2012) 1322-1331 MXene can be cold pressed in the form of thin (300 袖m) free- standing discs. Resistivity is comparable to multi-layer graphene. Contact angle measurements of water showed hydrophilic behavior. 25mm Wetting and Conductivity
  • 17. -足 17 -足 0 0.5 1 1.5 2 2.5 0 100 200 300 400 500 Q disch Cycle 1 Q ch Cycle 1 Q disch Cycle 2 Q ch Cycle 2 Q disch Cycle 20 Q ch Cycle 20 Q disch Cycle 25 Q ch Cycle 25 0 0.5 1 1.5 2 Potential (V vs. Li/Li + ) Specific Capacity (mAh揃g -1 ) Number of Inserted Li in the Structure (y) 1st 2nd 20-25 0 100 200 300 400 500 600 0 20 40 60 80 100 120 Data 31 4:08:31 PM 11/30/2011 Q discharg (C/25) Q charg (C/25) Qdischarge (C/6) Qcharge (C/6) Qdischarge (1C) Qcharge (1C/) Qdischarge (3C) Qcharge (3C) Qdischarge (10C) Qcharge (10C) Specific Capacity (mAh揃g -1 ) Cycle Number 0 100 200 300 400 500 600 0 5 10 15 20 Data 31 8:36:44 PM 11/3/2011 Q discharg (C/25) Q charg (C/25) Qdischarge (C/6) Qcharge (C/6) Qdischarge (1C) Qcharge (1C/) Qdischarge (3C) Qcharge (3C) Qdischarge (10C) Qcharge (10C) 3C 1C C/6 C/25 C/6 C/25 1C 3C & 10C 10C Ti2COx based anode properties similar to lithium titanate anodes M. Naguib, et al. Electrochemistry Communications 16 (2012) 61-64 MXene as a Li-足ion Ba[ery Anode
  • 18. -足 18 -足 SelecJve etching of A layer from MAX phases results in the formaJon of 2-足D transiJon metals carbides and/or nitrides called MXenes Band gap of MXene predicted to change with the surface chemistry Excellent mechanical properJes predicted (DFT) Su鍖ciently ducJle for cold pressing ConducJvity comparable to mulJ-足layer graphene Hydrophilic (contact angle 30-足40属) Li inserJon allows use in Li-足ion ba[ery anodes Summary of the Data to Date
  • 19. -足 19 -足 Electrical energy storage Pseudocapacitors, Lithium ion ba[eries, Hybrid devices Composite materials ConducJve, high-足strength, low-足permeability polymers, high strength and high toughness ceramic-足metal composites Sensors 2-足D and 鍖exible electronics Potential Applications M2X M3X2 M4X3
  • 20. -足 20 -足 Acknowledgments J辿r辿my Come & Patrice Simon, Universit辿 Paul Sabatier, Toulouse, France Jun Lu & Lars Hultman, Linkoping University, Sweden Gogotsi Nanomaterials Group Barsoum MAX Phase Group BATT Program