ݺߣ

ݺߣShare a Scribd company logo
Trần Sĩ Tùng Đại số 11
Trang 71
1. Định nghĩa đạo hàm tại một điểm
· Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 Î (a; b):
x x
f x f x
f x
x x0
0
0
0
( ) ( )
'( ) lim
®
-
=
-
=
x
y
x0
lim
D
D
D®
(Dx = x – x0, Dy = f(x0 + Dx) – f(x0))
· Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.
2. Ý nghĩa của đạo hàm
· Ý nghĩa hình học:
+ f¢ (x0) là hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x) tại ( )M x f x0 0; ( ) .
+ Khi đó phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại ( )M x y0 0; là:
y – y0 = f¢ (x0).(x – x0)
· Ý nghĩa vật lí:
+ Vận tốc tức thời của chuyển động thẳng xác định bởi phương trình s = s(t) tại thời điểm
t0 là v(t0) = s¢(t0).
+ Cường độ tức thời của điện lượng Q = Q(t) tại thời điểm t0 là I(t0) = Q¢(t0).
3. Qui tắc tính đạo hàm
· (C)¢ = 0 (x)¢ = 1 (xn
)¢ = n.xn–1 n N
n 1
æ öÎ
ç ÷>è ø
( )x
x
1
2
¢
=
· u v u v( )¢ ¢ ¢± = ± uv u v v u( )¢ ¢ ¢= +
u u v v u
v v2
¢æ ö ¢ - ¢
=ç ÷
è ø
(v ¹ 0)
ku ku( )¢ ¢=
v
v v2
1 ¢æ ö ¢
= -ç ÷
è ø
· Đạo hàm của hàm số hợp: Nếu u = g(x) có đạo hàm tại x là u¢x và hàm số y = f(u) có đạo
hàm tại u là y¢u thì hàm số hợp y = f(g(x) có đạo hàm tại x là: x u xy y u.¢ = ¢ ¢
4. Đạo hàm của hàm số lượng giác
·
x
x
x0
sin
lim 1
®
= ;
x x
u x
u x0
sin ( )
lim 1
( )®
= (với
x x
u x
0
lim ( ) 0
®
= )
· (sinx)¢ = cosx (cosx)¢ = – sinx ( )x
x2
1
tan
cos
¢ = ( )x
x2
1
cot
sin
¢ = -
5. Vi phân
· dy df x f x x( ) ( ).D= = ¢ · f x x f x f x x0 0 0( ) ( ) ( ).D D+ » + ¢
6. Đạo hàm cấp cao
· [ ]f x f x''( ) '( ) ¢= ; [ ]f x f x'''( ) ''( ) ¢= ; n n
f x f x( ) ( 1)
( ) ( )- ¢é ù= ë û (n Î N, n ³ 4)
· Ý nghĩa cơ học:
Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là a(t0) = f¢¢(t0).
CHƯƠNG V
ĐẠO HÀM
Đại số 11 Trần Sĩ Tùng
Trang 72
VẤN ĐỀ 1: Tính đạo hàm bằng định nghĩa
Để tính đạo hàm của hàm số y = f(x) tại điểm x0 bằng định nghĩa ta thực hiện các bước:
B1: Giả sử Dx là số gia của đối số tại x0. Tính Dy = f(x0 + Dx) – f(x0).
B2: Tính
x
y
x0
lim
D
D
D®
.
Baøi 1: Dùng định nghĩa tính đạo hàm của các hàm số sau tại điểm được chỉ ra:
a) y f x x x2
( ) 2 2= = - + tại x0 1= b) y f x x( ) 3 2= = - tại x0 = –3
c)
x
y f x
x
2 1
( )
1
+
= =
-
tại x0 = 2 d) y f x x( ) sin= = tại x0 =
6
p
e) y f x x3
( )= = tại x0 = 1 f)
x x
y f x
x
2
1
( )
1
+ +
= =
-
tại x0 = 0
Baøi 2: Dùng định nghĩa tính đạo hàm của các hàm số sau:
a) f x x x2
( ) 3 1= - + b) f x x x3
( ) 2= - c) f x x x( ) 1, ( 1)= + > -
d) f x
x
1
( )
2 3
=
-
e) f x x( ) sin= f) f x
x
1
( )
cos
=
VẤN ĐỀ 2: Tính đạo hàm bằng công thức
Để tính đạo hàm của hàm số y = f(x) bằng công thức ta sử dụng các qui tắc tính đạo hàm.
Chú ý qui tắc tính đạo hàm của hàm số hợp.
Baøi 1: Tính đạo hàm của các hàm số sau:
a) y x x x4 31
2 2 5
3
= - + - b) y x x x
x2
3 2
.
3
= - + c) y x x3 2
( 2)(1 )= - -
d) y x x x2 2 2
( 1)( 4)( 9)= - - - e) y x x x2
( 3 )(2 )= + - f) ( )y x
x
1
1 1
æ ö
= + -ç ÷
è ø
g) y
x
3
2 1
=
+
h)
x
y
x
2 1
1 3
+
=
-
i)
x x
y
x x
2
2
1
1
+ -
=
- +
k)
x x
y
x
2
3 3
1
- +
=
-
l)
x x
y
x
2
2 4 1
3
- +
=
-
m)
x
y
x x
2
2
2
2 3
=
- -
Baøi 2: Tính đạo hàm của các hàm số sau:
a) y x x2 4
( 1)= + + b) y x2 5
(1 2 )= - c) 3 2 11
( 2 1)= - +y x x
d) 2 5
( 2 )= -y x x e) ( )y x
4
2
3 2= - f) y
x x2 2
1
( 2 5)
=
- +
g)
x
y
x
2
3
( 1)
( 1)
+
=
-
h)
x
y
x
3
2 1
1
æ ö+
= ç ÷
-è ø
i)
3
2
3
2
æ ö
= -ç ÷
è ø
y
x
Baøi 3: Tính đạo hàm của các hàm số sau:
a) y x x2
2 5 2= - + b) y x x3
2= - + c) y x x= +
d) y x x2
( 2) 3= - + e) y x 3
( 2)= - f) ( )y x
3
1 1 2= + -
Trần Sĩ Tùng Đại số 11
Trang 73
g)
x
y
x
3
1
=
-
h)
x
y
x2
4 1
2
+
=
+
i)
x
y
x
2
4 +
=
Baøi 4: Tính đạo hàm của các hàm số sau:
a)
x
y
x
2
sin
1 cos
æ ö
= ç ÷
+è ø
b) y x x.cos= c) y x3
sin (2 1)= +
d) y xcot 2= e) y x2
sin 2= + f) y x xsin 2= +
g) y x2 3
(2 sin 2 )= + h) ( )y x x2 2
sin cos tan= i) y x x2 3
2sin 4 3cos 5= -
k)
x
y
x
2 1
cos
1
æ ö+
= ç ÷
ç ÷-è ø
l) y x x x3 52 1
tan2 tan 2 tan 2
3 5
= + +
Baøi 5: Cho n là số nguyên dương. Chứng minh rằng:
a) n n
x nx n x n x1
(sin .cos )' sin .cos( 1)-
= + b) n n
x nx n x n x1
(sin .sin )' .sin .sin( 1)-
= +
c) n n
x nx n x n x1
(cos .sin )' .cos .cos( 1)-
= + d) n n
x nx n x n x1
(cos .cos )' .cos .sin( 1)-
= - +
VẤN ĐỀ 3: Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x)
1. Phương trình tiếp tuyến tại điểm M(x0, y0) C( )Î là: y y f x x x0 0 0'( )( )- = - (*)
2. Viết phương trình tiếp tuyến với (C), biết tiếp tuyến có hệ số góc k:
+ Gọi x0 là hồnh độ của tiếp điểm. Ta có: f x k0( )¢ = (ý nghĩa hình học của đạo hàm)
+ Giải phương trình trên tìm x0, rồi tìm y f x0 0( ).=
+ Viết phương trình tiếp tuyến theo công thức (*)
3. Viết phương trình tiếp tuyến (d) với (C), biết (d) đi qua điểm A(x1, y1) cho trước:
+ Gọi (x0 , y0) là tiếp điểm (với y0 = f(x0)).
+ Phương trình tiếp tuyến (d): y y f x x x0 0 0'( )( )- = -
(d) qua A x y y y f x x x1 1 1 0 0 1 0( , ) '( ) ( ) (1)Û - = -
+ Giải phương trình (1) với ẩn là x0, rồi tìm y f x0 0( )= và f x0'( ).
+ Từ đó viết phương trình (d) theo công thức (*).
4. Nhắc lại: Cho (D): y = ax + b. Khi đó:
+ dd k a( ) ( )D¤¤ Þ = + dd k
a
1
( ) ( )D^ Þ = -
Baøi 1: Cho hàm số (C): y f x x x2
( ) 2 3.= = - + Viết phương trình tiếp tuyến với (C):
a) Tại điểm thuộc (C) có hoành độ x0 = 1.
b) Song song với đường thẳng 4x – 2y + 5 = 0.
c) Vuông góc với đường thẳng x + 4y = 0.
d) Vuông góc với đường phân giác thứ nhất của góc hợp bởi các trục tọa độ.
Baøi 2: Cho hàm số
x x
y f x
x
2
2
( )
1
- +
= =
-
(C).
a) Viết phương trình tiếp tuyến của (C) tại điểm M(2; 4).
b) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến có hệ số góc k = 1.
Đại số 11 Trần Sĩ Tùng
Trang 74
Baøi 3: Cho hàm số
x
y f x
x
3 1
( )
1
+
= =
-
(C).
a) Viết phương trình tiếp tuyến của (C) tại điểm A(2; –7).
b) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.
c) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung.
d) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng
d: y x
1
100
2
= + .
e) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng
D: 2x + 2y – 5 = 0.
Baøi 4: Cho hàm số (C): y x x3 2
3 .= -
a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1, –2).
b) Chứng minh rằng các tiếp tuyến khác của đồ thị (C) không đi qua I.
Baøi 5: Cho hàm số (C): y x x2
1 .= - - Tìm phương trình tiếp tuyến với (C):
a) Tại điểm có hoành độ x0 =
1
.
2
b) Song song với đường thẳng x + 2y = 0.
VẤN ĐỀ 4: Tính đạo hàm cấp cao
1. Để tính đạo hàm cấp 2, 3, 4, ... ta dùng công thức: ( )n n
y y
/
( ) ( 1)-
=
2. Để tính đạo hàm cấp n:
· Tính đạo hàm cấp 1, 2, 3, ..., từ đó dự đoán công thức đạo hàm cấp n.
· Dùng phương pháp quy nạp toán học để chứng minh công thức đúng.
Baøi 1: Cho hàm số f x x x( ) 3( 1)cos= + .
a) Tính f x f x'( ), ''( ) b) Tính f f f''( ), '' , ''(1)
2
p
p
æ ö
ç ÷
è ø
Baøi 2: Tính đạo hàm của các hàm số đến cấp được chỉ ra:
a) y x ycos , '''= b) y x x x x y4 3 2
5 2 5 4 7, ''= - + - + c)
x
y y
x
3
, ''
4
-
=
+
d) y x x y2
2 , ''= - e) y x x ysin , ''= f) y x x ytan , ''=
g) y x y2 3
( 1) , ''= + h) y x x y6 3 (4)
4 4,= - + i) y y
x
(5)1
,
1
=
-
Baøi 3: Cho n là số nguyên dương. Chứng minh rằng:
a)
n n
n
n
x x
( )
1
1 ( 1) !
1 (1 ) +
æ ö -
=ç ÷
+ +è ø
b) n n
x x( ) .
(sin ) sin
2
pæ ö
= +ç ÷
è ø
c) n n
x x( ) .
(cos ) cos
2
pæ ö
= +ç ÷
è ø
Baøi 4: Tính đạo hàm cấp n của các hàm số sau:
a) y
x
1
2
=
+
b) y
x x2
1
3 2
=
- +
c)
x
y
x2
1
=
-
d)
x
y
x
1
1
-
=
+
e) y x2
sin= f) y x x4 4
sin cos= +
Trần Sĩ Tùng Đại số 11
Trang 75
Baøi 5: Chứng minh các hệ thức sau với các hàm số được chỉ ra:
a)
y x x
xy y x xy
sin
'' 2( ' sin ) 0
ì =
í - - + =î
b) y x x
y y
2
3
2
'' 1 0
ìï = -
í
+ =ïî
c)
y x x
x y x y y2 2 2
tan
'' 2( )(1 ) 0
ì =
í
- + + =î
d)
x
y
x
y y y2
3
4
2 ( 1) ''
ì -
=ï
í +
ï ¢ = -î
VẤN ĐỀ 5: Tính giới hạn dạng
x x
u x
u x0
sin ( )
lim
( )®
Ta sử dụng các công thức lượng giác để biến đổi và sử dụng công thức
x x
u x
u x0
sin ( )
lim 1
( )®
= (với
x x
u x
0
lim ( ) 0
®
= )
Baøi 1: Tính các giới hạn sau:
a)
x
x
x0
sin3
lim
sin2®
b)
x
x
x20
1 cos
lim
®
-
c)
x
x
x0
tan2
lim
sin5®
d)
x
x x
x
4
cos sin
lim
cos2p
®
-
e)
x
x x
x x0
1 sin cos
lim
1 sin cos®
+ -
- -
f)
x
x
x
2
2
1 sin
lim
2
p
p®
-
æ ö
-ç ÷
è ø
g)
x
x x
2
lim tan
2p
p
®
æ ö
-ç ÷
è ø
h)
x
x
x6
sin
6lim
3
cos
2
p
p
®
æ ö
-ç ÷
è ø
-
VẤN ĐỀ 6: Các bài toán khác
Baøi 1: Giải phương trình f x'( ) 0= với:
a) f x x x x( ) 3cos 4sin 5= - + b) f x x x x( ) cos 3 sin 2 1= + + -
c) f x x x2
( ) sin 2cos= + d)
x x
f x x
cos4 cos6
( ) sin
4 6
= - -
e)
x
f x x
3
( ) 1 sin( ) 2cos
2
p
p
+
= - + + f) f x x x x x( ) sin3 3 cos3 3(cos 3 sin )= - + -
Baøi 2: Giải phương trình f x g x'( ) ( )= với:
a) f x x
g x x
4
( ) sin 3
( ) sin6
ì =
í
=î
b) f x x
g x x x
3
( ) sin 2
( ) 4cos2 5sin 4
ì =
í
= -î
c)
x
f x x
g x x x x
2 2
2
( ) 2 cos
2
( ) sin
ì
=ï
í
ï = -î
d)
x
f x x
x
g x x x
2
( ) 4 cos
2
( ) 8cos 3 2 sin
2
ì
=ï
í
ï = - -
î
Baøi 3: Giải bất phương trình f x g x'( ) '( )> với:
a) f x x x g x x x3 2
( ) 2, ( ) 3 2= + - = + + b) 2
( ) 2 8, ( )= - - =f x x x g x x
c)
x
f x x x g x x
2
3 2 3
( ) 2 3, ( ) 3
2
= - + = + - d) f x g x x x
x
32
( ) , ( )= = -
Đại số 11 Trần Sĩ Tùng
Trang 76
Baøi 4: Xác định m để các bất phương trình sau nghiệm đúng với mọi x Î R:
a)
mx
f x vôùi f x x mx
3
2
'( ) 0 ( ) 3 5
3
> = - + -
b)
mx mx
f x vôùi f x m x
3 2
'( ) 0 ( ) ( 1) 15
3 2
< = - + + -
Baøi 5: Cho hàm số 3 2
2 3.y x x mx= - + - Tìm m để:
a) '( )f x bằng bình phương của một nhị thức bậc nhất.
b) '( ) 0f x ³ với mọi x.
Baøi 6: Cho hàm số
3 2
( ) (3 ) 2.
3 2
mx mx
f x m x= - + - - + Tìm m để:
a) '( ) 0f x < với mọi x.
b) '( ) 0=f x có hai nghiệm phân biệt cùng dấu.
c) Trong trường hợp '( ) 0=f x có hai nghiệm, tìm hệ thức giữa hai nghiệm không phụ thuộc
vào m.
Trần Sĩ Tùng Đại số 11
Trang 77
BÀI TẬP ÔN CHƯỜNG V
Bài 1: Tính đạo hàm của các hàm số sau:
a) y x x3 2
( 4)= - b) y x x( 3)( 1)= + - c) y x x6
2 2= - +
d) y x x2
(2 1)= - e) y x x x2 3
(2 1)(4 2 )= + - f)
x
y
x
1 9
1
+
=
+
g)
x x
y
x
2
3 2
2 3
- +
=
-
h) y
x x2
1
2
=
-
i) 2 2
3 2y x( )= -
Bài 2: Tính đạo hàm của các hàm số sau:
a) y x x4 2
3 7= - + b) y x2
1= - c) y x x2
3 2= - -
d)
x
y
x
1
1
+
=
-
e)
x
y
x2
1
=
-
f)
x
y
x
3-
=
Bài 3: Tính đạo hàm của các hàm số sau:
a) y x x3
sin( 2)= - + b) y xtan(cos )= c)
x x
y
x x
sin
sin
= +
d)
x x
y
x x
sin cos
sin cos
+
=
-
e) y x x2
cot( 1)= - f) y x x2 2
cos ( 2 2)= + +
g) y xcos2= h) y x3 2
cot 1= + i) y x x2 2
tan (3 4 )= +
Bài 4: Viết phương trình tiếp tuyến của đồ thị (C) của các hàm số, với:
a) C y x x3 2
( ) : 3 2= - + tại điểm M( 1, 2).- -
b)
x x
C y
x
2
4 5
( ) :
2
+ +
=
+
tại điểm có hoành độ x0 0.=
c) C y x( ) : 2 1= + biết hệ số góc của tiếp tuyến là k
1
.
3
=
Bài 5: Cho hàm số y x x3 2
5 2= - + có đồ thị (C). Viết phương trình tiếp tuyến với đồ thị (C)
sao cho tiếp tuyến đó:
a) Song song với đường thẳng y x3 1.= - +
b) Vuông góc với đường thẳng y x
1
4.
7
= -
c) Đi qua điểm A(0;2).
Bài 6: a) Cho hàm số
x
f x
x
cos
( ) .
cos2
= Tính giá trị của f f' ' .
6 3
p pæ ö æ ö
+ç ÷ ç ÷
è ø è ø
b) Cho hai hàm số f x x x4 4
( ) sin cos= + và g x x
1
( ) cos4 .
4
= So sánh f x'( ) và g x'( ).
Bài 7: Tìm m để f x x R( ) 0,¢ > " Î , với:
a) f x x m x x3 2
( ) ( 1) 2 1.= + - + + b) f x x m x x mx
1
( ) sin sin2 sin3 2
3
= - - +
Bài 8: Chứng minh rằng f x x R( ) 0,¢ > " Î , với:
a) f x x x( ) 2 sin .= + b) f x x x x x x9 6 3 22
( ) 2 3 6 1.
3
= - + - + -
Bài 9:
a)
Ad

Recommended

Chuyen de dao ham
Chuyen de dao ham
Tuấn Nguyễn Anh
chuyen de ung dung cua dao ham va bt lien quan
chuyen de ung dung cua dao ham va bt lien quan
Vũ Hồng Toàn
đạO hàm và vi phân
đạO hàm và vi phân
chuateonline
Bài tập đạo hàm có hướng dẫn
Bài tập đạo hàm có hướng dẫn
diemthic3
OT HK II - 11
OT HK II - 11
Uant Tran
Bai7 khai trien_taylor
Bai7 khai trien_taylor
ljmonking
Ôn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phân
Ôn thi THPT Quốc Gia môn Toán về nguyên hàm và tích phân
Linh Nguyễn
chuyen de tich phan on thi dai hoc
chuyen de tich phan on thi dai hoc
Hoàng Thái Việt
Tích phân-3-Phương pháp biến đổi số-pages-30-43
Tích phân-3-Phương pháp biến đổi số-pages-30-43
lovestem
Các phương pháp giải mũ. logarit
Các phương pháp giải mũ. logarit
Thế Giới Tinh Hoa
Sử dụng máy tính
Sử dụng máy tính
queothienhoang
Bài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phân
Thế Giới Tinh Hoa
Chuyen de hsg
Chuyen de hsg
phongmathbmt
Chuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
tuituhoc
Tích phân hàm phân thức hữu tỷ (part 2)
Tích phân hàm phân thức hữu tỷ (part 2)
Oanh MJ
Khảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời Giải
Hải Finiks Huỳnh
Bài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phân
Thế Giới Tinh Hoa
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
Pham Dung
Chuyên đề luyện thi Đại học 2014
Chuyên đề luyện thi Đại học 2014
tuituhoc
Goi y-mon-toan-tot-nghiep-thpt-2012
Goi y-mon-toan-tot-nghiep-thpt-2012
Gia sư Đức Trí
Phuong phap tich phan
Phuong phap tich phan
phongmathbmt
Chuyên đề bai tap mu va logarit
Chuyên đề bai tap mu va logarit
Thiên Đường Tình Yêu
Hàm số - 2. Bảng biến thiên của Hàm số
Hàm số - 2. Bảng biến thiên của Hàm số
lovestem
100 cau hoi phu kshs
100 cau hoi phu kshs
ÔN THI Đại Học
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Thanh Bình Hoàng
De thi hoc ki 2 k12 nam 0910
De thi hoc ki 2 k12 nam 0910
lvquy
Pvt dao ham da 11
Pvt dao ham da 11
14149201
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu

More Related Content

What's hot (18)

Tích phân-3-Phương pháp biến đổi số-pages-30-43
Tích phân-3-Phương pháp biến đổi số-pages-30-43
lovestem
Các phương pháp giải mũ. logarit
Các phương pháp giải mũ. logarit
Thế Giới Tinh Hoa
Sử dụng máy tính
Sử dụng máy tính
queothienhoang
Bài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phân
Thế Giới Tinh Hoa
Chuyen de hsg
Chuyen de hsg
phongmathbmt
Chuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
tuituhoc
Tích phân hàm phân thức hữu tỷ (part 2)
Tích phân hàm phân thức hữu tỷ (part 2)
Oanh MJ
Khảo Sát Hàm Số Có Lời Giải
Khảo Sát Hàm Số Có Lời Giải
Hải Finiks Huỳnh
Bài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phân
Thế Giới Tinh Hoa
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
Pham Dung
Chuyên đề luyện thi Đại học 2014
Chuyên đề luyện thi Đại học 2014
tuituhoc
Goi y-mon-toan-tot-nghiep-thpt-2012
Goi y-mon-toan-tot-nghiep-thpt-2012
Gia sư Đức Trí
Phuong phap tich phan
Phuong phap tich phan
phongmathbmt
Chuyên đề bai tap mu va logarit
Chuyên đề bai tap mu va logarit
Thiên Đường Tình Yêu
Hàm số - 2. Bảng biến thiên của Hàm số
Hàm số - 2. Bảng biến thiên của Hàm số
lovestem
100 cau hoi phu kshs
100 cau hoi phu kshs
ÔN THI Đại Học
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Thanh Bình Hoàng
De thi hoc ki 2 k12 nam 0910
De thi hoc ki 2 k12 nam 0910
lvquy
Tích phân-3-Phương pháp biến đổi số-pages-30-43
Tích phân-3-Phương pháp biến đổi số-pages-30-43
lovestem
Bài tập sử dụng công thức nguyên hàm, tích phân
Bài tập sử dụng công thức nguyên hàm, tích phân
Thế Giới Tinh Hoa
Chuyên đề khảo sát hàm số đầy đủ
Chuyên đề khảo sát hàm số đầy đủ
tuituhoc
Tích phân hàm phân thức hữu tỷ (part 2)
Tích phân hàm phân thức hữu tỷ (part 2)
Oanh MJ
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
TÍCH PHÂN VÀ CÁC ỨNG DỤNG
Pham Dung
Chuyên đề luyện thi Đại học 2014
Chuyên đề luyện thi Đại học 2014
tuituhoc
Hàm số - 2. Bảng biến thiên của Hàm số
Hàm số - 2. Bảng biến thiên của Hàm số
lovestem
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Bai tap theo tung chuyen de on thi dai hoc 2012 2013
Thanh Bình Hoàng
De thi hoc ki 2 k12 nam 0910
De thi hoc ki 2 k12 nam 0910
lvquy

Similar to đại số lớp 11 (20)

Pvt dao ham da 11
Pvt dao ham da 11
14149201
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Chuyên đề ly thuyet on tap toan thpt
Chuyên đề ly thuyet on tap toan thpt
Thiên Đường Tình Yêu
Đáp Án Các Đề Thi Thử Toán 11 HK2
Đáp Án Các Đề Thi Thử Toán 11 HK2
thithanh2727
103212 kien thuc_tong_hop_6989
103212 kien thuc_tong_hop_6989
Phi Phi
103212 kien thuc_tong_hop_6989
103212 kien thuc_tong_hop_6989
Duy Vọng
103212 kien thuc_tong_hop_6989
103212 kien thuc_tong_hop_6989
Vũ Hồng Toàn
Toan11 cac quy_tac_dao_ham
Toan11 cac quy_tac_dao_ham
quantcn
Toan pt.de006.2012
Toan pt.de006.2012
BẢO Hí
Tổng hợp công thức giải nhanh trắc nghiệm toán THPT Quốc gia 2018
Tổng hợp công thức giải nhanh trắc nghiệm toán THPT Quốc gia 2018
Maloda
On thi thpt toan 2014 2015
On thi thpt toan 2014 2015
baoanh79
Toán h kii 10
Toán h kii 10
Dung Trịnh
Thi thu-toan-co-dap-an-2013-chuyen-vinh-phuc
Thi thu-toan-co-dap-an-2013-chuyen-vinh-phuc
webdethi
20 de on thi hk2 lop 11 co dap an chinh xac tại 123doc.vn
20 de on thi hk2 lop 11 co dap an chinh xac tại 123doc.vn
Tung Luu
On thi lai toan lop 11
On thi lai toan lop 11
le vinh
Hàm số ôn thi đại học
Hàm số ôn thi đại học
tuituhoc
Toan pt.de011.2012
Toan pt.de011.2012
BẢO Hí
De hk2 lop 11
De hk2 lop 11
Nguyen Thanh Trung
Pvt dao ham da 11
Pvt dao ham da 11
14149201
Đáp Án Các Đề Thi Thử Toán 11 HK2
Đáp Án Các Đề Thi Thử Toán 11 HK2
thithanh2727
103212 kien thuc_tong_hop_6989
103212 kien thuc_tong_hop_6989
Phi Phi
103212 kien thuc_tong_hop_6989
103212 kien thuc_tong_hop_6989
Duy Vọng
Toan11 cac quy_tac_dao_ham
Toan11 cac quy_tac_dao_ham
quantcn
Toan pt.de006.2012
Toan pt.de006.2012
BẢO Hí
Tổng hợp công thức giải nhanh trắc nghiệm toán THPT Quốc gia 2018
Tổng hợp công thức giải nhanh trắc nghiệm toán THPT Quốc gia 2018
Maloda
On thi thpt toan 2014 2015
On thi thpt toan 2014 2015
baoanh79
Thi thu-toan-co-dap-an-2013-chuyen-vinh-phuc
Thi thu-toan-co-dap-an-2013-chuyen-vinh-phuc
webdethi
20 de on thi hk2 lop 11 co dap an chinh xac tại 123doc.vn
20 de on thi hk2 lop 11 co dap an chinh xac tại 123doc.vn
Tung Luu
On thi lai toan lop 11
On thi lai toan lop 11
le vinh
Hàm số ôn thi đại học
Hàm số ôn thi đại học
tuituhoc
Toan pt.de011.2012
Toan pt.de011.2012
BẢO Hí
Ad

đại số lớp 11

  • 1. Trần Sĩ Tùng Đại số 11 Trang 71 1. Định nghĩa đạo hàm tại một điểm · Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 Î (a; b): x x f x f x f x x x0 0 0 0 ( ) ( ) '( ) lim ® - = - = x y x0 lim D D D® (Dx = x – x0, Dy = f(x0 + Dx) – f(x0)) · Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. 2. Ý nghĩa của đạo hàm · Ý nghĩa hình học: + f¢ (x0) là hệ số góc của tiếp tuyến của đồ thị hàm số y = f(x) tại ( )M x f x0 0; ( ) . + Khi đó phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại ( )M x y0 0; là: y – y0 = f¢ (x0).(x – x0) · Ý nghĩa vật lí: + Vận tốc tức thời của chuyển động thẳng xác định bởi phương trình s = s(t) tại thời điểm t0 là v(t0) = s¢(t0). + Cường độ tức thời của điện lượng Q = Q(t) tại thời điểm t0 là I(t0) = Q¢(t0). 3. Qui tắc tính đạo hàm · (C)¢ = 0 (x)¢ = 1 (xn )¢ = n.xn–1 n N n 1 æ öÎ ç ÷>è ø ( )x x 1 2 ¢ = · u v u v( )¢ ¢ ¢± = ± uv u v v u( )¢ ¢ ¢= + u u v v u v v2 ¢æ ö ¢ - ¢ =ç ÷ è ø (v ¹ 0) ku ku( )¢ ¢= v v v2 1 ¢æ ö ¢ = -ç ÷ è ø · Đạo hàm của hàm số hợp: Nếu u = g(x) có đạo hàm tại x là u¢x và hàm số y = f(u) có đạo hàm tại u là y¢u thì hàm số hợp y = f(g(x) có đạo hàm tại x là: x u xy y u.¢ = ¢ ¢ 4. Đạo hàm của hàm số lượng giác · x x x0 sin lim 1 ® = ; x x u x u x0 sin ( ) lim 1 ( )® = (với x x u x 0 lim ( ) 0 ® = ) · (sinx)¢ = cosx (cosx)¢ = – sinx ( )x x2 1 tan cos ¢ = ( )x x2 1 cot sin ¢ = - 5. Vi phân · dy df x f x x( ) ( ).D= = ¢ · f x x f x f x x0 0 0( ) ( ) ( ).D D+ » + ¢ 6. Đạo hàm cấp cao · [ ]f x f x''( ) '( ) ¢= ; [ ]f x f x'''( ) ''( ) ¢= ; n n f x f x( ) ( 1) ( ) ( )- ¢é ù= ë û (n Î N, n ³ 4) · Ý nghĩa cơ học: Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là a(t0) = f¢¢(t0). CHƯƠNG V ĐẠO HÀM
  • 2. Đại số 11 Trần Sĩ Tùng Trang 72 VẤN ĐỀ 1: Tính đạo hàm bằng định nghĩa Để tính đạo hàm của hàm số y = f(x) tại điểm x0 bằng định nghĩa ta thực hiện các bước: B1: Giả sử Dx là số gia của đối số tại x0. Tính Dy = f(x0 + Dx) – f(x0). B2: Tính x y x0 lim D D D® . Baøi 1: Dùng định nghĩa tính đạo hàm của các hàm số sau tại điểm được chỉ ra: a) y f x x x2 ( ) 2 2= = - + tại x0 1= b) y f x x( ) 3 2= = - tại x0 = –3 c) x y f x x 2 1 ( ) 1 + = = - tại x0 = 2 d) y f x x( ) sin= = tại x0 = 6 p e) y f x x3 ( )= = tại x0 = 1 f) x x y f x x 2 1 ( ) 1 + + = = - tại x0 = 0 Baøi 2: Dùng định nghĩa tính đạo hàm của các hàm số sau: a) f x x x2 ( ) 3 1= - + b) f x x x3 ( ) 2= - c) f x x x( ) 1, ( 1)= + > - d) f x x 1 ( ) 2 3 = - e) f x x( ) sin= f) f x x 1 ( ) cos = VẤN ĐỀ 2: Tính đạo hàm bằng công thức Để tính đạo hàm của hàm số y = f(x) bằng công thức ta sử dụng các qui tắc tính đạo hàm. Chú ý qui tắc tính đạo hàm của hàm số hợp. Baøi 1: Tính đạo hàm của các hàm số sau: a) y x x x4 31 2 2 5 3 = - + - b) y x x x x2 3 2 . 3 = - + c) y x x3 2 ( 2)(1 )= - - d) y x x x2 2 2 ( 1)( 4)( 9)= - - - e) y x x x2 ( 3 )(2 )= + - f) ( )y x x 1 1 1 æ ö = + -ç ÷ è ø g) y x 3 2 1 = + h) x y x 2 1 1 3 + = - i) x x y x x 2 2 1 1 + - = - + k) x x y x 2 3 3 1 - + = - l) x x y x 2 2 4 1 3 - + = - m) x y x x 2 2 2 2 3 = - - Baøi 2: Tính đạo hàm của các hàm số sau: a) y x x2 4 ( 1)= + + b) y x2 5 (1 2 )= - c) 3 2 11 ( 2 1)= - +y x x d) 2 5 ( 2 )= -y x x e) ( )y x 4 2 3 2= - f) y x x2 2 1 ( 2 5) = - + g) x y x 2 3 ( 1) ( 1) + = - h) x y x 3 2 1 1 æ ö+ = ç ÷ -è ø i) 3 2 3 2 æ ö = -ç ÷ è ø y x Baøi 3: Tính đạo hàm của các hàm số sau: a) y x x2 2 5 2= - + b) y x x3 2= - + c) y x x= + d) y x x2 ( 2) 3= - + e) y x 3 ( 2)= - f) ( )y x 3 1 1 2= + -
  • 3. Trần Sĩ Tùng Đại số 11 Trang 73 g) x y x 3 1 = - h) x y x2 4 1 2 + = + i) x y x 2 4 + = Baøi 4: Tính đạo hàm của các hàm số sau: a) x y x 2 sin 1 cos æ ö = ç ÷ +è ø b) y x x.cos= c) y x3 sin (2 1)= + d) y xcot 2= e) y x2 sin 2= + f) y x xsin 2= + g) y x2 3 (2 sin 2 )= + h) ( )y x x2 2 sin cos tan= i) y x x2 3 2sin 4 3cos 5= - k) x y x 2 1 cos 1 æ ö+ = ç ÷ ç ÷-è ø l) y x x x3 52 1 tan2 tan 2 tan 2 3 5 = + + Baøi 5: Cho n là số nguyên dương. Chứng minh rằng: a) n n x nx n x n x1 (sin .cos )' sin .cos( 1)- = + b) n n x nx n x n x1 (sin .sin )' .sin .sin( 1)- = + c) n n x nx n x n x1 (cos .sin )' .cos .cos( 1)- = + d) n n x nx n x n x1 (cos .cos )' .cos .sin( 1)- = - + VẤN ĐỀ 3: Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x) 1. Phương trình tiếp tuyến tại điểm M(x0, y0) C( )Î là: y y f x x x0 0 0'( )( )- = - (*) 2. Viết phương trình tiếp tuyến với (C), biết tiếp tuyến có hệ số góc k: + Gọi x0 là hồnh độ của tiếp điểm. Ta có: f x k0( )¢ = (ý nghĩa hình học của đạo hàm) + Giải phương trình trên tìm x0, rồi tìm y f x0 0( ).= + Viết phương trình tiếp tuyến theo công thức (*) 3. Viết phương trình tiếp tuyến (d) với (C), biết (d) đi qua điểm A(x1, y1) cho trước: + Gọi (x0 , y0) là tiếp điểm (với y0 = f(x0)). + Phương trình tiếp tuyến (d): y y f x x x0 0 0'( )( )- = - (d) qua A x y y y f x x x1 1 1 0 0 1 0( , ) '( ) ( ) (1)Û - = - + Giải phương trình (1) với ẩn là x0, rồi tìm y f x0 0( )= và f x0'( ). + Từ đó viết phương trình (d) theo công thức (*). 4. Nhắc lại: Cho (D): y = ax + b. Khi đó: + dd k a( ) ( )D¤¤ Þ = + dd k a 1 ( ) ( )D^ Þ = - Baøi 1: Cho hàm số (C): y f x x x2 ( ) 2 3.= = - + Viết phương trình tiếp tuyến với (C): a) Tại điểm thuộc (C) có hoành độ x0 = 1. b) Song song với đường thẳng 4x – 2y + 5 = 0. c) Vuông góc với đường thẳng x + 4y = 0. d) Vuông góc với đường phân giác thứ nhất của góc hợp bởi các trục tọa độ. Baøi 2: Cho hàm số x x y f x x 2 2 ( ) 1 - + = = - (C). a) Viết phương trình tiếp tuyến của (C) tại điểm M(2; 4). b) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến có hệ số góc k = 1.
  • 4. Đại số 11 Trần Sĩ Tùng Trang 74 Baøi 3: Cho hàm số x y f x x 3 1 ( ) 1 + = = - (C). a) Viết phương trình tiếp tuyến của (C) tại điểm A(2; –7). b) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành. c) Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung. d) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng d: y x 1 100 2 = + . e) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng D: 2x + 2y – 5 = 0. Baøi 4: Cho hàm số (C): y x x3 2 3 .= - a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm I(1, –2). b) Chứng minh rằng các tiếp tuyến khác của đồ thị (C) không đi qua I. Baøi 5: Cho hàm số (C): y x x2 1 .= - - Tìm phương trình tiếp tuyến với (C): a) Tại điểm có hoành độ x0 = 1 . 2 b) Song song với đường thẳng x + 2y = 0. VẤN ĐỀ 4: Tính đạo hàm cấp cao 1. Để tính đạo hàm cấp 2, 3, 4, ... ta dùng công thức: ( )n n y y / ( ) ( 1)- = 2. Để tính đạo hàm cấp n: · Tính đạo hàm cấp 1, 2, 3, ..., từ đó dự đoán công thức đạo hàm cấp n. · Dùng phương pháp quy nạp toán học để chứng minh công thức đúng. Baøi 1: Cho hàm số f x x x( ) 3( 1)cos= + . a) Tính f x f x'( ), ''( ) b) Tính f f f''( ), '' , ''(1) 2 p p æ ö ç ÷ è ø Baøi 2: Tính đạo hàm của các hàm số đến cấp được chỉ ra: a) y x ycos , '''= b) y x x x x y4 3 2 5 2 5 4 7, ''= - + - + c) x y y x 3 , '' 4 - = + d) y x x y2 2 , ''= - e) y x x ysin , ''= f) y x x ytan , ''= g) y x y2 3 ( 1) , ''= + h) y x x y6 3 (4) 4 4,= - + i) y y x (5)1 , 1 = - Baøi 3: Cho n là số nguyên dương. Chứng minh rằng: a) n n n n x x ( ) 1 1 ( 1) ! 1 (1 ) + æ ö - =ç ÷ + +è ø b) n n x x( ) . (sin ) sin 2 pæ ö = +ç ÷ è ø c) n n x x( ) . (cos ) cos 2 pæ ö = +ç ÷ è ø Baøi 4: Tính đạo hàm cấp n của các hàm số sau: a) y x 1 2 = + b) y x x2 1 3 2 = - + c) x y x2 1 = - d) x y x 1 1 - = + e) y x2 sin= f) y x x4 4 sin cos= +
  • 5. Trần Sĩ Tùng Đại số 11 Trang 75 Baøi 5: Chứng minh các hệ thức sau với các hàm số được chỉ ra: a) y x x xy y x xy sin '' 2( ' sin ) 0 ì = í - - + =î b) y x x y y 2 3 2 '' 1 0 ìï = - í + =ïî c) y x x x y x y y2 2 2 tan '' 2( )(1 ) 0 ì = í - + + =î d) x y x y y y2 3 4 2 ( 1) '' ì - =ï í + ï ¢ = -î VẤN ĐỀ 5: Tính giới hạn dạng x x u x u x0 sin ( ) lim ( )® Ta sử dụng các công thức lượng giác để biến đổi và sử dụng công thức x x u x u x0 sin ( ) lim 1 ( )® = (với x x u x 0 lim ( ) 0 ® = ) Baøi 1: Tính các giới hạn sau: a) x x x0 sin3 lim sin2® b) x x x20 1 cos lim ® - c) x x x0 tan2 lim sin5® d) x x x x 4 cos sin lim cos2p ® - e) x x x x x0 1 sin cos lim 1 sin cos® + - - - f) x x x 2 2 1 sin lim 2 p p® - æ ö -ç ÷ è ø g) x x x 2 lim tan 2p p ® æ ö -ç ÷ è ø h) x x x6 sin 6lim 3 cos 2 p p ® æ ö -ç ÷ è ø - VẤN ĐỀ 6: Các bài toán khác Baøi 1: Giải phương trình f x'( ) 0= với: a) f x x x x( ) 3cos 4sin 5= - + b) f x x x x( ) cos 3 sin 2 1= + + - c) f x x x2 ( ) sin 2cos= + d) x x f x x cos4 cos6 ( ) sin 4 6 = - - e) x f x x 3 ( ) 1 sin( ) 2cos 2 p p + = - + + f) f x x x x x( ) sin3 3 cos3 3(cos 3 sin )= - + - Baøi 2: Giải phương trình f x g x'( ) ( )= với: a) f x x g x x 4 ( ) sin 3 ( ) sin6 ì = í =î b) f x x g x x x 3 ( ) sin 2 ( ) 4cos2 5sin 4 ì = í = -î c) x f x x g x x x x 2 2 2 ( ) 2 cos 2 ( ) sin ì =ï í ï = -î d) x f x x x g x x x 2 ( ) 4 cos 2 ( ) 8cos 3 2 sin 2 ì =ï í ï = - - î Baøi 3: Giải bất phương trình f x g x'( ) '( )> với: a) f x x x g x x x3 2 ( ) 2, ( ) 3 2= + - = + + b) 2 ( ) 2 8, ( )= - - =f x x x g x x c) x f x x x g x x 2 3 2 3 ( ) 2 3, ( ) 3 2 = - + = + - d) f x g x x x x 32 ( ) , ( )= = -
  • 6. Đại số 11 Trần Sĩ Tùng Trang 76 Baøi 4: Xác định m để các bất phương trình sau nghiệm đúng với mọi x Î R: a) mx f x vôùi f x x mx 3 2 '( ) 0 ( ) 3 5 3 > = - + - b) mx mx f x vôùi f x m x 3 2 '( ) 0 ( ) ( 1) 15 3 2 < = - + + - Baøi 5: Cho hàm số 3 2 2 3.y x x mx= - + - Tìm m để: a) '( )f x bằng bình phương của một nhị thức bậc nhất. b) '( ) 0f x ³ với mọi x. Baøi 6: Cho hàm số 3 2 ( ) (3 ) 2. 3 2 mx mx f x m x= - + - - + Tìm m để: a) '( ) 0f x < với mọi x. b) '( ) 0=f x có hai nghiệm phân biệt cùng dấu. c) Trong trường hợp '( ) 0=f x có hai nghiệm, tìm hệ thức giữa hai nghiệm không phụ thuộc vào m.
  • 7. Trần Sĩ Tùng Đại số 11 Trang 77 BÀI TẬP ÔN CHƯỜNG V Bài 1: Tính đạo hàm của các hàm số sau: a) y x x3 2 ( 4)= - b) y x x( 3)( 1)= + - c) y x x6 2 2= - + d) y x x2 (2 1)= - e) y x x x2 3 (2 1)(4 2 )= + - f) x y x 1 9 1 + = + g) x x y x 2 3 2 2 3 - + = - h) y x x2 1 2 = - i) 2 2 3 2y x( )= - Bài 2: Tính đạo hàm của các hàm số sau: a) y x x4 2 3 7= - + b) y x2 1= - c) y x x2 3 2= - - d) x y x 1 1 + = - e) x y x2 1 = - f) x y x 3- = Bài 3: Tính đạo hàm của các hàm số sau: a) y x x3 sin( 2)= - + b) y xtan(cos )= c) x x y x x sin sin = + d) x x y x x sin cos sin cos + = - e) y x x2 cot( 1)= - f) y x x2 2 cos ( 2 2)= + + g) y xcos2= h) y x3 2 cot 1= + i) y x x2 2 tan (3 4 )= + Bài 4: Viết phương trình tiếp tuyến của đồ thị (C) của các hàm số, với: a) C y x x3 2 ( ) : 3 2= - + tại điểm M( 1, 2).- - b) x x C y x 2 4 5 ( ) : 2 + + = + tại điểm có hoành độ x0 0.= c) C y x( ) : 2 1= + biết hệ số góc của tiếp tuyến là k 1 . 3 = Bài 5: Cho hàm số y x x3 2 5 2= - + có đồ thị (C). Viết phương trình tiếp tuyến với đồ thị (C) sao cho tiếp tuyến đó: a) Song song với đường thẳng y x3 1.= - + b) Vuông góc với đường thẳng y x 1 4. 7 = - c) Đi qua điểm A(0;2). Bài 6: a) Cho hàm số x f x x cos ( ) . cos2 = Tính giá trị của f f' ' . 6 3 p pæ ö æ ö +ç ÷ ç ÷ è ø è ø b) Cho hai hàm số f x x x4 4 ( ) sin cos= + và g x x 1 ( ) cos4 . 4 = So sánh f x'( ) và g x'( ). Bài 7: Tìm m để f x x R( ) 0,¢ > " Î , với: a) f x x m x x3 2 ( ) ( 1) 2 1.= + - + + b) f x x m x x mx 1 ( ) sin sin2 sin3 2 3 = - - + Bài 8: Chứng minh rằng f x x R( ) 0,¢ > " Î , với: a) f x x x( ) 2 sin .= + b) f x x x x x x9 6 3 22 ( ) 2 3 6 1. 3 = - + - + - Bài 9: a)