際際滷

際際滷Share a Scribd company logo
Matematika SMA : Integral Page 1
     = (  + ) + (   )
     = (  + )  (   )
     = (  + ) + (   )
     = (   )  (  + )
INTEGRAL FUNGSI TRIGONOMETRI
Rumus Dasar:
  sin(  + )  = 
1

cos(  + ) + 
  cos(  + )  =
1

sin(  + ) + 
  sec2(  + )  =
1

tan(  + ) + 
  cosec2(  + )  = 
1

cotan(  + ) + 
  sec(  + )tan(  + )  =
1

sec(  + ) + 
  cosec(  + ) cotan(  + )  = 
1

cosec(  + ) + 
Contoh
1.  sin(3 + 2)  = 
1
3
cos(3 + 2) + 
2.  sec4 tan4  =
1
4
sec 4 + 
3.  2cos3 sin   = (sin 4  sin 2) 
= 
1
4
cos4  (
1
2
cos 2) + 
=
1
2
cos2 
1
4
cos4 + 
4.  sin5
 cos  
Dengan menggunakan teknik substitusi, maka
Misal  = sin 
 = cos  
 sin5
 cos   =  5
 =
1
6
6
+  =
1
6
sin6
 + 
5.
 sin 6 

0
= [
1
6
cos6]
0

= (
1
6
cos6)  (
1
6
cos0)
= (
1
6
 1)  (
1
6
 1)
= 0
Matematika SMA : Integral Page 2
 Jika  genap, maka :
 Jika  ganjil, maka :
Contoh
 sin3
 
Jawab
Karena  = 3, maka sin2
 = 1  cos2
 dan  = cos 
 sin3
  =  sin  sin2
 
= sin  (1  cos2
) 
= (sin   sin  cos2
) 
= cos    sin  cos2
 
Jika  = cos  maka  = sin  
 sin3
  =  cos    2

= cos  +
1
3
3
+ 
= cos  +
1
3
cos3
 + 
Contoh
 cos4
 
Jawab
Karena  = 4, maka cos2
 =
1
2
(1 + cos2)
 cos4
  = (cos2
)2

= (
1
2
(1 + cos2))
2

= 
1
4
(1 + 2 cos2 + cos2
2) 
sin    , cos   
sin2
 =
1
2
(1  cos2)
cos2
 =
1
2
(1 + cos 2)
sin2
 = 1  cos2
 ,  = cos 
cos2
 = 1  sin2
 ,  = sin
Matematika SMA : Integral Page 3
= 
1
4
(1 + 2cos2 +
1
2
(1 + cos4)) 
= 
1
4
(1 + 2 cos2 +
1
2
+
1
2
cos 4) 
= 
1
4
(
3
2
+ 2 cos2 +
1
2
cos4) 
=
1
4
(
3
2
 + 2 
1
2
sin 2 +
1
2

1
4
cos4) + 
=
3
8
 +
1
4
sin 2 +
1
32
cos4 + 
 Jika ,  keduanya genap genap, maka :
 Jika  ganjil, maka :
 Jika  ganjil, maka :
Contoh
 sin4
 cos5
 
Jawab
Karena  = 4 dan  = 5 maka gunakan cos2
 = 1  sin2
 dan  = sin 
 = cos  
 sin4
 cos5
  =  sin4
 cos4
 cos  
=  sin4
 (cos2
)2
cos  
=  sin4
 (1  sin2
)2
cos  
=  4(1  2)2

=  4(1  22
+ 4) 
= ( 4
 26
+ 8) 
 sin   cos   
sin2
 =
1
2
(1  cos2)
cos2
 =
1
2
(1 + cos 2)
sin2
 = 1  cos2
 ,  = cos 
cos2
 = 1  sin2
 ,  = sin
Matematika SMA : Integral Page 4
=
1
5
5
 2 
1
7
7
+
1
9
9
+ 
=
1
5
sin5
 
2
7
sin7
 +
1
9
sin9
 + 
Contoh
 sin3
 cos2
 
Jawab
Karena  = 3 dan  = 2 maka gunakan sin2
 = 1  cos2
 dan  = cos 
 =  sin  
 sin3
 cos2
  =  sin2
 cos2
 sin  
= (1  cos2
)cos2
 sin  
= (1  2) 2()
= (2
+ 4) 
= 
1
3
3
+
1
5
5
+ 
= 
1
3
sin3
 +
1
5
sin5
 + 
Contoh
 sin4
 cos4
 
Jawab
Karena  = 4 dan  = 4 maka gunakan cos2
 =
1
2
(1 + cos2),sin2
 =
1
2
(1  cos2)
 sin4
 cos4
  = (sin2
 cos2
)2

=  (
1
2
(1  cos2) 
1
2
(1 + cos2))
2

=  (
1
4
(1  cos2
2))
2

=  (
1
4
sin2
2)
2

= 
1
16
(
1
2
(1  cos 4))
2

= 
1
64
(1  2cos4 + cos2
4)
Matematika SMA : Integral Page 5
=
1
64
(1  2 cos4 +
1
2
(1 + cos8)) 
=
1
64
(1  2 cos4 +
1
2
+
1
2
cos8) 
=
1
64
(
3
2
 2 cos4 +
1
2
cos8) 
=
1
64
(
3
2
  2 
1
4
sin 4 +
1
2

1
8
sin 8) + 
=
3
128
 
1
128
sin 4 +
1
1.024
sin 8 + 
LATIHAN YUKS!
1.  cos2
 
2.  cos3
 
3.  sin5
 
4.  sin7
3 cos2
3 
5.  sin4
2 cos4
2

More Related Content

Integral Fungsi Trigonometri

  • 1. Matematika SMA : Integral Page 1 = ( + ) + ( ) = ( + ) ( ) = ( + ) + ( ) = ( ) ( + ) INTEGRAL FUNGSI TRIGONOMETRI Rumus Dasar: sin( + ) = 1 cos( + ) + cos( + ) = 1 sin( + ) + sec2( + ) = 1 tan( + ) + cosec2( + ) = 1 cotan( + ) + sec( + )tan( + ) = 1 sec( + ) + cosec( + ) cotan( + ) = 1 cosec( + ) + Contoh 1. sin(3 + 2) = 1 3 cos(3 + 2) + 2. sec4 tan4 = 1 4 sec 4 + 3. 2cos3 sin = (sin 4 sin 2) = 1 4 cos4 ( 1 2 cos 2) + = 1 2 cos2 1 4 cos4 + 4. sin5 cos Dengan menggunakan teknik substitusi, maka Misal = sin = cos sin5 cos = 5 = 1 6 6 + = 1 6 sin6 + 5. sin 6 0 = [ 1 6 cos6] 0 = ( 1 6 cos6) ( 1 6 cos0) = ( 1 6 1) ( 1 6 1) = 0
  • 2. Matematika SMA : Integral Page 2 Jika genap, maka : Jika ganjil, maka : Contoh sin3 Jawab Karena = 3, maka sin2 = 1 cos2 dan = cos sin3 = sin sin2 = sin (1 cos2 ) = (sin sin cos2 ) = cos sin cos2 Jika = cos maka = sin sin3 = cos 2 = cos + 1 3 3 + = cos + 1 3 cos3 + Contoh cos4 Jawab Karena = 4, maka cos2 = 1 2 (1 + cos2) cos4 = (cos2 )2 = ( 1 2 (1 + cos2)) 2 = 1 4 (1 + 2 cos2 + cos2 2) sin , cos sin2 = 1 2 (1 cos2) cos2 = 1 2 (1 + cos 2) sin2 = 1 cos2 , = cos cos2 = 1 sin2 , = sin
  • 3. Matematika SMA : Integral Page 3 = 1 4 (1 + 2cos2 + 1 2 (1 + cos4)) = 1 4 (1 + 2 cos2 + 1 2 + 1 2 cos 4) = 1 4 ( 3 2 + 2 cos2 + 1 2 cos4) = 1 4 ( 3 2 + 2 1 2 sin 2 + 1 2 1 4 cos4) + = 3 8 + 1 4 sin 2 + 1 32 cos4 + Jika , keduanya genap genap, maka : Jika ganjil, maka : Jika ganjil, maka : Contoh sin4 cos5 Jawab Karena = 4 dan = 5 maka gunakan cos2 = 1 sin2 dan = sin = cos sin4 cos5 = sin4 cos4 cos = sin4 (cos2 )2 cos = sin4 (1 sin2 )2 cos = 4(1 2)2 = 4(1 22 + 4) = ( 4 26 + 8) sin cos sin2 = 1 2 (1 cos2) cos2 = 1 2 (1 + cos 2) sin2 = 1 cos2 , = cos cos2 = 1 sin2 , = sin
  • 4. Matematika SMA : Integral Page 4 = 1 5 5 2 1 7 7 + 1 9 9 + = 1 5 sin5 2 7 sin7 + 1 9 sin9 + Contoh sin3 cos2 Jawab Karena = 3 dan = 2 maka gunakan sin2 = 1 cos2 dan = cos = sin sin3 cos2 = sin2 cos2 sin = (1 cos2 )cos2 sin = (1 2) 2() = (2 + 4) = 1 3 3 + 1 5 5 + = 1 3 sin3 + 1 5 sin5 + Contoh sin4 cos4 Jawab Karena = 4 dan = 4 maka gunakan cos2 = 1 2 (1 + cos2),sin2 = 1 2 (1 cos2) sin4 cos4 = (sin2 cos2 )2 = ( 1 2 (1 cos2) 1 2 (1 + cos2)) 2 = ( 1 4 (1 cos2 2)) 2 = ( 1 4 sin2 2) 2 = 1 16 ( 1 2 (1 cos 4)) 2 = 1 64 (1 2cos4 + cos2 4)
  • 5. Matematika SMA : Integral Page 5 = 1 64 (1 2 cos4 + 1 2 (1 + cos8)) = 1 64 (1 2 cos4 + 1 2 + 1 2 cos8) = 1 64 ( 3 2 2 cos4 + 1 2 cos8) = 1 64 ( 3 2 2 1 4 sin 4 + 1 2 1 8 sin 8) + = 3 128 1 128 sin 4 + 1 1.024 sin 8 + LATIHAN YUKS! 1. cos2 2. cos3 3. sin5 4. sin7 3 cos2 3 5. sin4 2 cos4 2