ݺߣ

ݺߣShare a Scribd company logo
LATEX Mathematical Symbols
The more unusual symbols are not defined in base LATEX (NFSS) and require usepackage{amssymb}
1 Greek and Hebrew letters
α alpha κ kappa ψ psi digamma ∆ Delta Θ Theta
β beta λ lambda ρ rho ε varepsilon Γ Gamma Υ Upsilon
χ chi µ mu σ sigma κ varkappa Λ Lambda Ξ Xi
δ delta ν nu τ tau ϕ varphi Ω Omega
epsilon o o θ theta varpi Φ Phi ℵ aleph
η eta ω omega υ upsilon varrho Π Pi beth
γ gamma φ phi ξ xi ς varsigma Ψ Psi daleth
ι iota π pi ζ zeta ϑ vartheta Σ Sigma gimel
2 LATEX math constructs
abc
xyz frac{abc}{xyz} abc overline{abc}
−→
abc overrightarrow{abc}
f f’ abc underline{abc}
←−
abc overleftarrow{abc}
√
abc sqrt{abc} abc widehat{abc} abc overbrace{abc}
n
√
abc sqrt[n]{abc} abc widetilde{abc} abc underbrace{abc}
3 Delimiters
| | { { lfloor / / ⇑ Uparrow llcorner
| vert } } rfloor  backslash ↑ uparrow lrcorner
| langle lceil [ [ ⇓ Downarrow ulcorner
Vert rangle rceil ] ] ↓ downarrow urcorner
Use the pair lefts1 and rights2 to match height of delimiters s1 and s2 to the height of their contents, e.g.,
left| expr right| left{ expr right} leftVert expr right.
4 Variable-sized symbols (displayed formulae show larger version)
sum int biguplus bigoplus bigvee
prod oint bigcap bigotimes bigwedge
coprod iint bigcup bigodot bigsqcup
5 Standard Function Names
Function names should appear in Roman, not Italic, e.g.,
Correct: tan(at-npi) −→ tan(at − nπ)
Incorrect: tan(at-npi) −→ tan(at − nπ)
arccos arccos arcsin arcsin arctan arctan arg arg
cos cos cosh cosh cot cot coth coth
csc csc deg deg det det dim dim
exp exp gcd gcd hom hom inf inf
ker ker lg lg lim lim lim inf liminf
lim sup limsup ln ln log log max max
min min Pr Pr sec sec sin sin
sinh sinh sup sup tan tan tanh tanh
6 Binary Operation/Relation Symbols
∗ ast ± pm ∩ cap lhd
star mp ∪ cup rhd
· cdot amalg uplus triangleleft
◦ circ odot sqcap triangleright
• bullet ominus sqcup unlhd
bigcirc ⊕ oplus ∧ wedge unrhd
diamond oslash ∨ vee bigtriangledown
× times ⊗ otimes † dagger bigtriangleup
÷ div wr ‡ ddagger  setminus
centerdot Box barwedge veebar
circledast boxplus curlywedge curlyvee
circledcirc boxminus Cap Cup
circleddash boxtimes ⊥ bot top
dotplus boxdot intercal rightthreetimes
divideontimes square doublebarwedge leftthreetimes
≡ equiv ≤ leq ≥ geq ⊥ perp
∼= cong prec succ | mid
= neq preceq succeq parallel
∼ sim ll gg bowtie
simeq ⊂ subset ⊃ supset Join
≈ approx ⊆ subseteq ⊇ supseteq ltimes
asymp sqsubset sqsupset rtimes
.
= doteq sqsubseteq sqsupseteq smile
∝ propto dashv vdash frown
|= models ∈ in ni /∈ notin
approxeq leqq geqq lessgtr
∼ thicksim leqslant geqslant lesseqgtr
backsim lessapprox gtrapprox lesseqqgtr
backsimeq lll ggg gtreqqless
triangleq lessdot gtrdot gtreqless
circeq lesssim gtrsim gtrless
bumpeq eqslantless eqslantgtr backepsilon
Bumpeq precsim succsim between
doteqdot precapprox succapprox pitchfork
≈ thickapprox Subset Supset shortmid
fallingdotseq subseteqq supseteqq smallfrown
risingdotseq sqsubset sqsupset smallsmile
∝ varpropto preccurlyeq succcurlyeq Vdash
∴ therefore curlyeqprec curlyeqsucc vDash
because blacktriangleleft blacktriangleright Vvdash
eqcirc trianglelefteq trianglerighteq shortparallel
= neq vartriangleleft vartriangleright nshortparallel
ncong nleq ngeq nsubseteq
nmid nleqq ngeqq nsupseteq
nparallel nleqslant ngeqslant nsubseteqq
nshortmid nless ngtr nsupseteqq
nshortparallel nprec nsucc subsetneq
nsim npreceq nsucceq supsetneq
nVDash precnapprox succnapprox subsetneqq
nvDash precnsim succnsim supsetneqq
nvdash lnapprox gnapprox varsubsetneq
ntriangleleft lneq gneq varsupsetneq
ntrianglelefteq lneqq gneqq varsubsetneqq
ntriangleright lnsim gnsim varsupsetneqq
ntrianglerighteq lvertneqq gvertneqq
7 Arrow symbols
← leftarrow ←− longleftarrow ↑ uparrow
⇐ Leftarrow ⇐= Longleftarrow ⇑ Uparrow
→ rightarrow −→ longrightarrow ↓ downarrow
⇒ Rightarrow =⇒ Longrightarrow ⇓ Downarrow
↔ leftrightarrow ←→ longleftrightarrow updownarrow
⇔ Leftrightarrow ⇐⇒ Longleftrightarrow Updownarrow
→ mapsto −→ longmapsto nearrow
← hookleftarrow → hookrightarrow searrow
leftharpoonup rightharpoonup swarrow
leftharpoondown rightharpoondown nwarrow
rightleftharpoons leadsto
dashrightarrow dashleftarrow leftleftarrows
leftrightarrows Lleftarrow twoheadleftarrow
leftarrowtail looparrowleft leftrightharpoons
curvearrowleft circlearrowleft Lsh
upuparrows upharpoonleft downharpoonleft
multimap leftrightsquigarrow rightrightarrows
rightleftarrows rightrightarrows rightleftarrows
twoheadrightarrow rightarrowtail looparrowright
rightleftharpoons curvearrowright circlearrowright
Rsh downdownarrows upharpoonright
downharpoonright rightsquigarrow
nleftarrow nrightarrow nLeftarrow
nRightarrow nleftrightarrow nLeftrightarrow
8 Miscellaneous symbols
∞ infty ∀ forall k Bbbk ℘ wp
nabla ∃ exists bigstar ∠ angle
∂ partial nexists diagdown measuredangle
ð eth ∅ emptyset diagup sphericalangle
♣ clubsuit ∅ varnothing ♦ Diamond complement
♦ diamondsuit ı imath Finv triangledown
♥ heartsuit  jmath Game triangle
♠ spadesuit ell hbar vartriangle
· · · cdots iiiint hslash blacklozenge
... vdots iiint ♦ lozenge blacksquare
. . . ldots iint mho blacktriangle
... ddots sharp prime blacktrinagledown
Im flat square backprime
Re natural
√
surd circledS
9 Math mode accents
´a acute{a} ¯a bar{a}
´´A Acute{Acute{A}} ¯¯A Bar{Bar{A}}
˘a breve{a} ˇa check{a}
˘˘A Breve{Breve{A}} ˇˇA Check{Check{A}}
¨a ddot{a} ˙a dot{a} ¨¨A Ddot{Ddot{A}} ˙˙A Dot{Dot{A}}
`a grave{a} ˆa hat{a}
``A Grave{Grave{A}}
ˆˆA Hat{Hat{A}}
˜a tilde{a} a vec{a} ˜˜A Tilde{Tilde{A}} A Vec{Vec{A}}
10 Array environment, examples
Simplest version: begin{array}{cols} row1  row2  . . . rowm end{array}
where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines)
and rowj includes character & a total of (n − 1) times to separate the n elements in the row. Examples:
left( begin{array}{cc} 2tau & 7phi-frac5{12} 
3psi & frac{pi}8 end{array} right)
left( begin{array}{c} x  y end{array} right)
mbox{~and~} left[ begin{array}{cc|r}
3 & 4 & 5  1 & 3 & 729 end{array} right]
2τ 7φ − 5
12
3ψ π
8
x
y
and
3 4 5
1 3 729
f(z) = left{ begin{array}{rcl}
overline{overline{z^2}+cos z} & mbox{for}
& |z|<3  0 & mbox{for} & 3leq|z|leq5 
sinoverline{z} & mbox{for} & |z|>5
end{array}right.
f(z) =



z2 + cos z for |z| < 3
0 for 3 ≤ |z| ≤ 5
sin z for |z| > 5
11 Other Styles (math mode only)
Caligraphic letters: $mathcal{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Mathbb letters: $mathbb{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Mathfrak letters: $mathfrak{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math Sans serif letters: $mathsf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math bold letters: $mathbf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math bold italic letters: define defmathbi#1{textbf{em #1}} then use $mathbi{A}$ etc.:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
12 Font sizes
Math Mode:
f−1
(x − xa) dx ${displaystyle int f^{-1}(x-x_a),dx}$
f−1
(x − xa) dx ${textstyle int f^{-1}(x-x_a),dx}$
f−1
(x−xa) dx ${scriptstyle int f^{-1}(x-x_a),dx}$
f−1(x−xa) dx ${scriptscriptstyle int f^{-1}(x-x_a),dx}$
Text Mode:
tiny = smallest
scriptsize = very small
footnotesize = smaller
small = small
normalsize = normal
large = large
Large = Large
LARGE = LARGE
huge = huge
Huge = Huge
13 Text Mode: Accents and Symbols
´o ’{o} ¨o "{o} ˆo ^{o} `o ‘{o} ˜o ~{o} ¯o ={o} s. d s
˙o .{o} ˘o u{o} ˝o H{o} oo t{oo} ¸o c{o} o. d{o} ˚s r s
o
¯
b{o} ˚A AA ˚a aa ß ss ı i  j ˝s H s
ø o s t s ˇs v s Ø O ¶ P § S
æ ae Æ AE † dag ‡ ddag c copyright £ pounds

More Related Content

Similar to La tex symbols (20)

PDF
Latex Symbols.pdf
Komal526846
PDF
symbols of Latex.pdf
MdNaim23
PDF
La tex symbols
keneniaddis
PDF
Latex symbols
makrib
PPTX
Introduction to Latex symbols and commands
Ahmed Fouad Ali
PPTX
Brief instruction on backprop
YasutoTamura1
PDF
Out with Regex, In with Tokens
scoates
PDF
Typesetting Mathematics with LaTeX - Day 2
Suddhasheel GHOSH, PhD
PDF
Regexp secrets
Hiro Asari
PDF
Unicode Regular Expressions
Nova Patch
ZIP
Advanced Regular Expressions Redux
Jakub Nesetril
PDF
And now you have two problems. Ruby regular expressions for fun and profit by...
Codemotion
PDF
Os Fetterupdated
oscon2007
PDF
Linux fundamental - Chap 06 regx
Kenny (netman)
PDF
Recursive descent parsing
Boy Baukema
PDF
[Erlang LT] Regexp Perl And Port
Keiichi Daiba
PDF
Erlang with Regexp Perl And Port
Keiichi Daiba
PPT
Regular Expressions
Satya Narayana
PDF
Random. Kinda.
awwaiid
PDF
my$talk=qr{((?:ir)?reg(?:ular )?exp(?:ressions?)?)}i;
dankogai
Latex Symbols.pdf
Komal526846
symbols of Latex.pdf
MdNaim23
La tex symbols
keneniaddis
Latex symbols
makrib
Introduction to Latex symbols and commands
Ahmed Fouad Ali
Brief instruction on backprop
YasutoTamura1
Out with Regex, In with Tokens
scoates
Typesetting Mathematics with LaTeX - Day 2
Suddhasheel GHOSH, PhD
Regexp secrets
Hiro Asari
Unicode Regular Expressions
Nova Patch
Advanced Regular Expressions Redux
Jakub Nesetril
And now you have two problems. Ruby regular expressions for fun and profit by...
Codemotion
Os Fetterupdated
oscon2007
Linux fundamental - Chap 06 regx
Kenny (netman)
Recursive descent parsing
Boy Baukema
[Erlang LT] Regexp Perl And Port
Keiichi Daiba
Erlang with Regexp Perl And Port
Keiichi Daiba
Regular Expressions
Satya Narayana
Random. Kinda.
awwaiid
my$talk=qr{((?:ir)?reg(?:ular )?exp(?:ressions?)?)}i;
dankogai

Recently uploaded (20)

PPSX
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
PPTX
Fundamentals of Quantitative Design and Analysis.pptx
aliali240367
PPTX
Engineering Quiz ShowEngineering Quiz Show
CalvinLabial
PDF
Submit Your Papers-International Journal on Cybernetics & Informatics ( IJCI)
IJCI JOURNAL
PDF
Authentication Devices in Fog-mobile Edge Computing Environments through a Wi...
ijujournal
PDF
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
PPTX
Biosensors, BioDevices, Biomediccal.pptx
AsimovRiyaz
PDF
Artificial intelligence,WHAT IS AI ALL ABOUT AI....pdf
Himani271945
PPTX
Seminar Description: YOLO v1 (You Only Look Once).pptx
abhijithpramod20002
PDF
NTPC PATRATU Summer internship report.pdf
hemant03701
PPTX
template.pptxr4t5y67yrttttttttttttttttttttttttttttttttttt
SithamparanaathanPir
PDF
methodology-driven-mbse-murphy-july-hsv-huntsville6680038572db67488e78ff00003...
henriqueltorres1
PPT
FINAL plumbing code for board exam passer
MattKristopherDiaz
PDF
PROGRAMMING REQUESTS/RESPONSES WITH GREATFREE IN THE CLOUD ENVIRONMENT
samueljackson3773
PPTX
Functions in Python Programming Language
BeulahS2
PDF
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
PDF
this idjfk sgfdhgdhgdbhgbgrbdrwhrgbbhtgdt
WaleedAziz7
DOCX
Engineering Geology Field Report to Malekhu .docx
justprashant567
PDF
20ES1152 Programming for Problem Solving Lab Manual VRSEC.pdf
Ashutosh Satapathy
PPTX
L300 Technical ݺߣ Library_Feb 2025 microsoft purview
macarenabenitez6
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
Fundamentals of Quantitative Design and Analysis.pptx
aliali240367
Engineering Quiz ShowEngineering Quiz Show
CalvinLabial
Submit Your Papers-International Journal on Cybernetics & Informatics ( IJCI)
IJCI JOURNAL
Authentication Devices in Fog-mobile Edge Computing Environments through a Wi...
ijujournal
Clustering Algorithms - Kmeans,Min ALgorithm
Sharmila Chidaravalli
Biosensors, BioDevices, Biomediccal.pptx
AsimovRiyaz
Artificial intelligence,WHAT IS AI ALL ABOUT AI....pdf
Himani271945
Seminar Description: YOLO v1 (You Only Look Once).pptx
abhijithpramod20002
NTPC PATRATU Summer internship report.pdf
hemant03701
template.pptxr4t5y67yrttttttttttttttttttttttttttttttttttt
SithamparanaathanPir
methodology-driven-mbse-murphy-july-hsv-huntsville6680038572db67488e78ff00003...
henriqueltorres1
FINAL plumbing code for board exam passer
MattKristopherDiaz
PROGRAMMING REQUESTS/RESPONSES WITH GREATFREE IN THE CLOUD ENVIRONMENT
samueljackson3773
Functions in Python Programming Language
BeulahS2
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
this idjfk sgfdhgdhgdbhgbgrbdrwhrgbbhtgdt
WaleedAziz7
Engineering Geology Field Report to Malekhu .docx
justprashant567
20ES1152 Programming for Problem Solving Lab Manual VRSEC.pdf
Ashutosh Satapathy
L300 Technical ݺߣ Library_Feb 2025 microsoft purview
macarenabenitez6
Ad

La tex symbols

  • 1. LATEX Mathematical Symbols The more unusual symbols are not defined in base LATEX (NFSS) and require usepackage{amssymb} 1 Greek and Hebrew letters α alpha κ kappa ψ psi digamma ∆ Delta Θ Theta β beta λ lambda ρ rho ε varepsilon Γ Gamma Υ Upsilon χ chi µ mu σ sigma κ varkappa Λ Lambda Ξ Xi δ delta ν nu τ tau ϕ varphi Ω Omega epsilon o o θ theta varpi Φ Phi ℵ aleph η eta ω omega υ upsilon varrho Π Pi beth γ gamma φ phi ξ xi ς varsigma Ψ Psi daleth ι iota π pi ζ zeta ϑ vartheta Σ Sigma gimel 2 LATEX math constructs abc xyz frac{abc}{xyz} abc overline{abc} −→ abc overrightarrow{abc} f f’ abc underline{abc} ←− abc overleftarrow{abc} √ abc sqrt{abc} abc widehat{abc} abc overbrace{abc} n √ abc sqrt[n]{abc} abc widetilde{abc} abc underbrace{abc} 3 Delimiters | | { { lfloor / / ⇑ Uparrow llcorner | vert } } rfloor backslash ↑ uparrow lrcorner | langle lceil [ [ ⇓ Downarrow ulcorner Vert rangle rceil ] ] ↓ downarrow urcorner Use the pair lefts1 and rights2 to match height of delimiters s1 and s2 to the height of their contents, e.g., left| expr right| left{ expr right} leftVert expr right. 4 Variable-sized symbols (displayed formulae show larger version) sum int biguplus bigoplus bigvee prod oint bigcap bigotimes bigwedge coprod iint bigcup bigodot bigsqcup 5 Standard Function Names Function names should appear in Roman, not Italic, e.g., Correct: tan(at-npi) −→ tan(at − nπ) Incorrect: tan(at-npi) −→ tan(at − nπ) arccos arccos arcsin arcsin arctan arctan arg arg cos cos cosh cosh cot cot coth coth csc csc deg deg det det dim dim exp exp gcd gcd hom hom inf inf ker ker lg lg lim lim lim inf liminf lim sup limsup ln ln log log max max min min Pr Pr sec sec sin sin sinh sinh sup sup tan tan tanh tanh
  • 2. 6 Binary Operation/Relation Symbols ∗ ast ± pm ∩ cap lhd star mp ∪ cup rhd · cdot amalg uplus triangleleft ◦ circ odot sqcap triangleright • bullet ominus sqcup unlhd bigcirc ⊕ oplus ∧ wedge unrhd diamond oslash ∨ vee bigtriangledown × times ⊗ otimes † dagger bigtriangleup ÷ div wr ‡ ddagger setminus centerdot Box barwedge veebar circledast boxplus curlywedge curlyvee circledcirc boxminus Cap Cup circleddash boxtimes ⊥ bot top dotplus boxdot intercal rightthreetimes divideontimes square doublebarwedge leftthreetimes ≡ equiv ≤ leq ≥ geq ⊥ perp ∼= cong prec succ | mid = neq preceq succeq parallel ∼ sim ll gg bowtie simeq ⊂ subset ⊃ supset Join ≈ approx ⊆ subseteq ⊇ supseteq ltimes asymp sqsubset sqsupset rtimes . = doteq sqsubseteq sqsupseteq smile ∝ propto dashv vdash frown |= models ∈ in ni /∈ notin approxeq leqq geqq lessgtr ∼ thicksim leqslant geqslant lesseqgtr backsim lessapprox gtrapprox lesseqqgtr backsimeq lll ggg gtreqqless triangleq lessdot gtrdot gtreqless circeq lesssim gtrsim gtrless bumpeq eqslantless eqslantgtr backepsilon Bumpeq precsim succsim between doteqdot precapprox succapprox pitchfork ≈ thickapprox Subset Supset shortmid fallingdotseq subseteqq supseteqq smallfrown risingdotseq sqsubset sqsupset smallsmile ∝ varpropto preccurlyeq succcurlyeq Vdash ∴ therefore curlyeqprec curlyeqsucc vDash because blacktriangleleft blacktriangleright Vvdash eqcirc trianglelefteq trianglerighteq shortparallel = neq vartriangleleft vartriangleright nshortparallel ncong nleq ngeq nsubseteq nmid nleqq ngeqq nsupseteq nparallel nleqslant ngeqslant nsubseteqq nshortmid nless ngtr nsupseteqq nshortparallel nprec nsucc subsetneq nsim npreceq nsucceq supsetneq nVDash precnapprox succnapprox subsetneqq nvDash precnsim succnsim supsetneqq nvdash lnapprox gnapprox varsubsetneq ntriangleleft lneq gneq varsupsetneq ntrianglelefteq lneqq gneqq varsubsetneqq ntriangleright lnsim gnsim varsupsetneqq ntrianglerighteq lvertneqq gvertneqq
  • 3. 7 Arrow symbols ← leftarrow ←− longleftarrow ↑ uparrow ⇐ Leftarrow ⇐= Longleftarrow ⇑ Uparrow → rightarrow −→ longrightarrow ↓ downarrow ⇒ Rightarrow =⇒ Longrightarrow ⇓ Downarrow ↔ leftrightarrow ←→ longleftrightarrow updownarrow ⇔ Leftrightarrow ⇐⇒ Longleftrightarrow Updownarrow → mapsto −→ longmapsto nearrow ← hookleftarrow → hookrightarrow searrow leftharpoonup rightharpoonup swarrow leftharpoondown rightharpoondown nwarrow rightleftharpoons leadsto dashrightarrow dashleftarrow leftleftarrows leftrightarrows Lleftarrow twoheadleftarrow leftarrowtail looparrowleft leftrightharpoons curvearrowleft circlearrowleft Lsh upuparrows upharpoonleft downharpoonleft multimap leftrightsquigarrow rightrightarrows rightleftarrows rightrightarrows rightleftarrows twoheadrightarrow rightarrowtail looparrowright rightleftharpoons curvearrowright circlearrowright Rsh downdownarrows upharpoonright downharpoonright rightsquigarrow nleftarrow nrightarrow nLeftarrow nRightarrow nleftrightarrow nLeftrightarrow 8 Miscellaneous symbols ∞ infty ∀ forall k Bbbk ℘ wp nabla ∃ exists bigstar ∠ angle ∂ partial nexists diagdown measuredangle ð eth ∅ emptyset diagup sphericalangle ♣ clubsuit ∅ varnothing ♦ Diamond complement ♦ diamondsuit ı imath Finv triangledown ♥ heartsuit  jmath Game triangle ♠ spadesuit ell hbar vartriangle · · · cdots iiiint hslash blacklozenge ... vdots iiint ♦ lozenge blacksquare . . . ldots iint mho blacktriangle ... ddots sharp prime blacktrinagledown Im flat square backprime Re natural √ surd circledS 9 Math mode accents ´a acute{a} ¯a bar{a} ´´A Acute{Acute{A}} ¯¯A Bar{Bar{A}} ˘a breve{a} ˇa check{a} ˘˘A Breve{Breve{A}} ˇˇA Check{Check{A}} ¨a ddot{a} ˙a dot{a} ¨¨A Ddot{Ddot{A}} ˙˙A Dot{Dot{A}} `a grave{a} ˆa hat{a} ``A Grave{Grave{A}} ˆˆA Hat{Hat{A}} ˜a tilde{a} a vec{a} ˜˜A Tilde{Tilde{A}} A Vec{Vec{A}}
  • 4. 10 Array environment, examples Simplest version: begin{array}{cols} row1 row2 . . . rowm end{array} where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines) and rowj includes character & a total of (n − 1) times to separate the n elements in the row. Examples: left( begin{array}{cc} 2tau & 7phi-frac5{12} 3psi & frac{pi}8 end{array} right) left( begin{array}{c} x y end{array} right) mbox{~and~} left[ begin{array}{cc|r} 3 & 4 & 5 1 & 3 & 729 end{array} right] 2τ 7φ − 5 12 3ψ π 8 x y and 3 4 5 1 3 729 f(z) = left{ begin{array}{rcl} overline{overline{z^2}+cos z} & mbox{for} & |z|<3 0 & mbox{for} & 3leq|z|leq5 sinoverline{z} & mbox{for} & |z|>5 end{array}right. f(z) =    z2 + cos z for |z| < 3 0 for 3 ≤ |z| ≤ 5 sin z for |z| > 5 11 Other Styles (math mode only) Caligraphic letters: $mathcal{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Mathbb letters: $mathbb{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Mathfrak letters: $mathfrak{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math Sans serif letters: $mathsf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math bold letters: $mathbf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math bold italic letters: define defmathbi#1{textbf{em #1}} then use $mathbi{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 12 Font sizes Math Mode: f−1 (x − xa) dx ${displaystyle int f^{-1}(x-x_a),dx}$ f−1 (x − xa) dx ${textstyle int f^{-1}(x-x_a),dx}$ f−1 (x−xa) dx ${scriptstyle int f^{-1}(x-x_a),dx}$ f−1(x−xa) dx ${scriptscriptstyle int f^{-1}(x-x_a),dx}$ Text Mode: tiny = smallest scriptsize = very small footnotesize = smaller small = small normalsize = normal large = large Large = Large LARGE = LARGE huge = huge Huge = Huge 13 Text Mode: Accents and Symbols ´o ’{o} ¨o "{o} ˆo ^{o} `o ‘{o} ˜o ~{o} ¯o ={o} s. d s ˙o .{o} ˘o u{o} ˝o H{o} oo t{oo} ¸o c{o} o. d{o} ˚s r s o ¯ b{o} ˚A AA ˚a aa ß ss ı i  j ˝s H s ø o s t s ˇs v s Ø O ¶ P § S æ ae Æ AE † dag ‡ ddag c copyright £ pounds