際際滷

際際滷Share a Scribd company logo
2
Most read
3
Most read
L
ATEX Mathematical Symbols
The more unusual symbols are not defined in base L
A
TEX (NFSS) and require usepackage{amssymb}
1 Greek and Hebrew letters
α alpha κ kappa ψ psi z digamma ? Delta Θ Theta
β beta λ lambda ρ rho ε varepsilon Γ Gamma Υ Upsilon
χ chi ? mu σ sigma κ varkappa Λ Lambda Ξ Xi
δ delta ν nu τ tau ? varphi ? Omega
 epsilon o o θ theta $ varpi Φ Phi ? aleph
η eta ω omega υ upsilon % varrho Π Pi i beth
γ gamma φ phi ξ xi ? varsigma Ψ Psi k daleth
ι iota π pi ζ zeta ? vartheta Σ Sigma ??? gimel
2 L
A
TEX math constructs
abc
xyz frac{abc}{xyz} abc overline{abc}
?
★
abc overrightarrow{abc}
f0
f¨ abc underline{abc}
○
?
abc overleftarrow{abc}
〔
abc sqrt{abc} c
abc widehat{abc}
z}|{
abc overbrace{abc}
n
〔
abc sqrt[n]{abc} f
abc widetilde{abc} abc
|{z} underbrace{abc}
3 Delimiters
| | { { b lfloor / / ? Uparrow x llcorner
| vert } } c rfloor  backslash ● uparrow y lrcorner
k | h langle d lceil [ [ ? Downarrow p ulcorner
k Vert i rangle e rceil ] ] ◎ downarrow q urcorner
Use the pair lefts1 and rights2 to match height of delimiters s1 and s2 to the height of their contents, e.g.,
left| expr right| left{ expr right} leftVert expr right.
4 Variable-sized symbols (displayed formulae show larger version)
P
sum
R
int
U
biguplus
L
bigoplus
W
bigvee
Q
prod
H
oint
T
bigcap
N
bigotimes
V
bigwedge
`
coprod
RR
iint
S
bigcup
J
bigodot
F
bigsqcup
5 Standard Function Names
Function names should appear in Roman, not Italic, e.g.,
Correct: tan(at-npi) ?★ tan(at ? nπ)
Incorrect: tan(at-npi) ?★ tan(at ? nπ)
arccos arccos arcsin arcsin arctan arctan arg arg
cos cos cosh cosh cot cot coth coth
csc csc deg deg det det dim dim
exp exp gcd gcd hom hom inf inf
ker ker lg lg lim lim lim inf liminf
lim sup limsup ln ln log log max max
min min Pr Pr sec sec sin sin
sinh sinh sup sup tan tan tanh tanh
6 Binary Operation/Relation Symbols
? ast \ pm ” cap C lhd
? star ? mp “ cup B rhd
, cdot q amalg ] uplus / triangleleft
? circ odot u sqcap . triangleright
? bullet ominus t sqcup E unlhd
bigcirc  oplus … wedge D unrhd
 diamond oslash ‥ vee 5 bigtriangledown
〜 times ? otimes ? dagger 4 bigtriangleup
‖ div o wr ? ddagger  setminus
 centerdot  Box Z barwedge Y veebar
~ circledast  boxplus f curlywedge g curlyvee
} circledcirc boxminus e Cap d Cup
 circleddash  boxtimes 〕 bot  top
u dotplus boxdot | intercal i rightthreetimes
 divideontimes  square [ doublebarwedge h leftthreetimes
《 equiv + leq − geq 〕 perp
゛
= cong ? prec  succ | mid
6= neq  preceq  succeq k parallel
゛ sim  ll  gg ./ bowtie
' simeq ? subset ? supset o
n Join
「 approx ? subseteq ? supseteq n ltimes
 asymp @ sqsubset A sqsupset o rtimes
.
= doteq v sqsubseteq w sqsupseteq ^ smile
『 propto a dashv ` vdash _ frown
|= models ( in 3 ni /
( notin
u approxeq 5 leqq = geqq ? lessgtr
゛ thicksim 6 leqslant  geqslant Q lesseqgtr
v backsim / lessapprox ' gtrapprox S lesseqqgtr
w backsimeq ? lll ? ggg T gtreqqless
, triangleq l lessdot m gtrdot R gtreqless
$ circeq . lesssim  gtrsim ? gtrless
l bumpeq 0 eqslantless 1 eqslantgtr  backepsilon
m Bumpeq - precsim % succsim G between
+ doteqdot w precapprox v succapprox t pitchfork
「 thickapprox b Subset c Supset p shortmid
; fallingdotseq j subseteqq k supseteqq a smallfrown
: risingdotseq @ sqsubset A sqsupset ` smallsmile
『 varpropto 4 preccurlyeq  succcurlyeq Vdash
÷ therefore 2 curlyeqprec 3 curlyeqsucc  vDash
× because J blacktriangleleft I blacktriangleright  Vvdash
P eqcirc E trianglelefteq D trianglerighteq q shortparallel
6= neq C vartriangleleft B vartriangleright / nshortparallel
 ncong  nleq  ngeq * nsubseteq
- nmid  nleqq  ngeqq + nsupseteq
? nparallel nleqslant ngeqslant  nsubseteqq
. nshortmid 【 nless 】 ngtr # nsupseteqq
/ nshortparallel ? nprec  nsucc ( subsetneq
 nsim  npreceq  nsucceq ) supsetneq
3 nVDash  precnapprox  succnapprox $ subsetneqq
2 nvDash  precnsim  succnsim % supsetneqq
0 nvdash  lnapprox  gnapprox varsubsetneq
6 ntriangleleft lneq gneq ! varsupsetneq
5 ntrianglelefteq  lneqq gneqq  varsubsetneqq
7 ntriangleright  lnsim  gnsim ' varsupsetneqq
4 ntrianglerighteq lvertneqq  gvertneqq
7 Arrow symbols
○ leftarrow ○? longleftarrow ● uparrow
? Leftarrow ?= Longleftarrow ? Uparrow
★ rightarrow ?★ longrightarrow ◎ downarrow
? Rightarrow =? Longrightarrow ? Downarrow
? leftrightarrow ○★ longleftrightarrow l updownarrow
? Leftrightarrow ?? Longleftrightarrow m Updownarrow
7★ mapsto 7?★ longmapsto % nearrow
○- hookleftarrow ,★ hookrightarrow  searrow
( leftharpoonup * rightharpoonup . swarrow
) leftharpoondown + rightharpoondown - nwarrow
rightleftharpoons leadsto
99K dashrightarrow L99 dashleftarrow ? leftleftarrows
 leftrightarrows W Lleftarrow  twoheadleftarrow
 leftarrowtail  looparrowleft leftrightharpoons
x curvearrowleft circlearrowleft  Lsh
 upuparrows  upharpoonleft  downharpoonleft
( multimap ! leftrightsquigarrow ? rightrightarrows
 rightleftarrows ? rightrightarrows  rightleftarrows
 twoheadrightarrow  rightarrowtail # looparrowright
rightleftharpoons y curvearrowright  circlearrowright
 Rsh  downdownarrows  upharpoonright
 downharpoonright rightsquigarrow
8 nleftarrow 9 nrightarrow : nLeftarrow
; nRightarrow = nleftrightarrow  nLeftrightarrow
8 Miscellaneous symbols
± infty ? forall k Bbbk ? wp
? nabla ? exists F bigstar ] angle
? partial @ nexists  diagdown ] measuredangle
? eth ? emptyset  diagup ^ sphericalangle
? clubsuit ? varnothing ? Diamond { complement
? diamondsuit ? imath ` Finv O triangledown
? heartsuit ? jmath a Game 4 triangle
? spadesuit ` ell ~ hbar M vartriangle
, , , cdots
RRRR
iiiint } hslash  blacklozenge
.
.
. vdots
RRR
iiint ? lozenge  blacksquare
. . . ldots
RR
iint f mho N blacktriangle
... ddots ] sharp 0 prime H blacktrinagledown
= Im [ flat  square 8 backprime
 Re  natural
〔
surd s circledS
9 Math mode accents
a? acute{a} a? bar{a}
?
A? Acute{Acute{A}} ?
A? Bar{Bar{A}}
a? breve{a} a? check{a}
?
A? Breve{Breve{A}} ・
A? Check{Check{A}}
a? ddot{a} a? dot{a} :
A? Ddot{Ddot{A}} B
A? Dot{Dot{A}}
a? grave{a} a? hat{a}
`
A? Grave{Grave{A}}
?
A? Hat{Hat{A}}
a? tilde{a} ~
a vec{a} ?
A? Tilde{Tilde{A}}
~
~
A Vec{Vec{A}}
10 Array environment, examples
Simplest version: begin{array}{cols} row1  row2  . . . rowm end{array}
where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines)
and rowj includes character  a total of (n ? 1) times to separate the n elements in the row. Examples:
left( begin{array}{cc} 2tau  7phi-frac5{12} 
3psi  frac{pi}8 end{array} right)
left( begin{array}{c} x  y end{array} right)
mbox{~and~} left[ begin{array}{cc|r}
3  4  5  1  3  729 end{array} right]

2τ 7φ ? 5
12
3ψ π
8
 
x
y

and

3 4 5
1 3 729

f(z) = left{ begin{array}{rcl}
overline{overline{z^2}+cos z}  mbox{for}
 |z|3  0  mbox{for}  3leq|z|leq5 
sinoverline{z}  mbox{for}  |z|5
end{array}right.
f(z) =
?
?
?
z2 + cos z for |z|  3
0 for 3 + |z| + 5
sin z for |z|  5
11 Other Styles (math mode only)
Caligraphic letters: $mathcal{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Mathbb letters: $mathbb{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Mathfrak letters: $mathfrak{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math Sans serif letters: $mathsf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math bold letters: $mathbf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
Math bold italic letters: define defmathbi#1{textbf{em #1}} then use $mathbi{A}$ etc.:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3
12 Font sizes
Math Mode:
Z
f?1
(x ? xa) dx ${displaystyle int f^{-1}(x-x_a),dx}$
R
f?1
(x ? xa) dx ${textstyle int f^{-1}(x-x_a),dx}$
R
f?1
(x?xa) dx ${scriptstyle int f^{-1}(x-x_a),dx}$
R
f?1(x?xa) dx ${scriptscriptstyle int f^{-1}(x-x_a),dx}$
Text Mode:
tiny = smallest
scriptsize = very small
footnotesize = smaller
small = small
normalsize = normal
large = large
Large = Large
LARGE = LARGE
huge = huge
Huge = Huge
13 Text Mode: Accents and Symbols
o? ¨{o} o? {o} o? ^{o} o? `{o} o? ~{o} o? ={o} s
. d s
o? .{o} o? u{o} o? H{o} 
oo t{oo} o? c{o} o
. d{o} s? r s
o
?
b{o} A? AA a? aa ? ss ? i ? j s? H s
? o 
s t s s? v s ? O ? P ′ S
? ae ? AE ? dag ? ddag c copyright ? pounds

More Related Content

Similar to Latex Symbols.pdf (20)

PPTX
Introduction to Latex symbols and commands
Ahmed Fouad Ali
?
PPT
Juan matlab
JUAN QUINTANA MENDOZA
?
PDF
Bigdelim help
Mai M?n Ti?p
?
PDF
Ltxcrib
AMINSANA
?
PDF
Out with Regex, In with Tokens
scoates
?
ZIP
Advanced Regular Expressions Redux
Jakub Nesetril
?
PDF
Regexp secrets
Hiro Asari
?
PPTX
RIDA PROJECT
Rida Bilgrami
?
PDF
Unicode Regular Expressions
Nova Patch
?
PDF
And now you have two problems. Ruby regular expressions for fun and profit by...
Codemotion
?
PDF
アプリケ`ションライフサイクル砿尖 古勣
崘嵶 Lg
?
PDF
Transformations Workshop Oct 24
Darren Kuropatwa
?
PDF
JSARToolKit / LiveChromaKey / LivePointers - Next gen of AR
Yusuke Kawasaki
?
PDF
Advanced latex
awverret
?
PDF
Random. Kinda.
awwaiid
?
PDF
Exploring fractals in CSS, @fronttrends, Warsaw, 2015
pixelass
?
PPT
Regular Expressions
Satya Narayana
?
PDF
Nerd talk: regexes
Luisa Hugerth
?
PDF
Os Fetterupdated
oscon2007
?
PDF
Linux fundamental - Chap 06 regx
Kenny (netman)
?
Introduction to Latex symbols and commands
Ahmed Fouad Ali
?
Bigdelim help
Mai M?n Ti?p
?
Ltxcrib
AMINSANA
?
Out with Regex, In with Tokens
scoates
?
Advanced Regular Expressions Redux
Jakub Nesetril
?
Regexp secrets
Hiro Asari
?
RIDA PROJECT
Rida Bilgrami
?
Unicode Regular Expressions
Nova Patch
?
And now you have two problems. Ruby regular expressions for fun and profit by...
Codemotion
?
アプリケ`ションライフサイクル砿尖 古勣
崘嵶 Lg
?
Transformations Workshop Oct 24
Darren Kuropatwa
?
JSARToolKit / LiveChromaKey / LivePointers - Next gen of AR
Yusuke Kawasaki
?
Advanced latex
awverret
?
Random. Kinda.
awwaiid
?
Exploring fractals in CSS, @fronttrends, Warsaw, 2015
pixelass
?
Regular Expressions
Satya Narayana
?
Nerd talk: regexes
Luisa Hugerth
?
Os Fetterupdated
oscon2007
?
Linux fundamental - Chap 06 regx
Kenny (netman)
?

Recently uploaded (20)

PDF
Plant Control_EST_85520-01_en_AllChanges_20220127.pdf
DarshanaChathuranga4
?
PPSX
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
?
PPT
SF 9_Unit 1.ppt software engineering ppt
AmarrKannthh
?
PDF
Module - 4 Machine Learning -22ISE62.pdf
Dr. Shivashankar
?
PDF
i氏Y創_Miipher and Miipher2 .
鰻粥京晦粥皆幄塀氏芙
?
PDF
June 2025 - Top 10 Read Articles in Network Security and Its Applications
IJNSA Journal
?
PPTX
CST413 KTU S7 CSE Machine Learning Introduction Parameter Estimation MLE MAP ...
resming1
?
PPTX
Precooling and Refrigerated storage.pptx
ThongamSunita
?
PDF
Bayesian Learning - Naive Bayes Algorithm
Sharmila Chidaravalli
?
PDF
????? ?? ??????? ?????????? ????? ?????? ??? ????.pdf
???? ??? ?????
?
PPTX
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
?
PDF
CLIP_Internals_and_Architecture.pdf sdvsdv sdv
JoseLuisCahuanaRamos3
?
PPTX
Functions in Python Programming Language
BeulahS2
?
PDF
Generative AI & Scientific Research : Catalyst for Innovation, Ethics & Impact
AlqualsaDIResearchGr
?
PDF
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
?
PDF
LLC CM NCP1399 SIMPLIS MODEL MANUAL.PDF
ssuser1be9ce
?
PDF
June 2025 Top 10 Sites -Electrical and Electronics Engineering: An Internatio...
elelijjournal653
?
PPTX
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Endang Saefullah
?
PDF
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
?
PDF
Designing for Tomorrow C Architecture¨s Role in the Sustainability Movement
BIM Services
?
Plant Control_EST_85520-01_en_AllChanges_20220127.pdf
DarshanaChathuranga4
?
OOPS Concepts in Python and Exception Handling
Dr. A. B. Shinde
?
SF 9_Unit 1.ppt software engineering ppt
AmarrKannthh
?
Module - 4 Machine Learning -22ISE62.pdf
Dr. Shivashankar
?
i氏Y創_Miipher and Miipher2 .
鰻粥京晦粥皆幄塀氏芙
?
June 2025 - Top 10 Read Articles in Network Security and Its Applications
IJNSA Journal
?
CST413 KTU S7 CSE Machine Learning Introduction Parameter Estimation MLE MAP ...
resming1
?
Precooling and Refrigerated storage.pptx
ThongamSunita
?
Bayesian Learning - Naive Bayes Algorithm
Sharmila Chidaravalli
?
????? ?? ??????? ?????????? ????? ?????? ??? ????.pdf
???? ??? ?????
?
FSE_LLM4SE1_A Tool for In-depth Analysis of Code Execution Reasoning of Large...
cl144
?
CLIP_Internals_and_Architecture.pdf sdvsdv sdv
JoseLuisCahuanaRamos3
?
Functions in Python Programming Language
BeulahS2
?
Generative AI & Scientific Research : Catalyst for Innovation, Ethics & Impact
AlqualsaDIResearchGr
?
bs-en-12390-3 testing hardened concrete.pdf
ADVANCEDCONSTRUCTION
?
LLC CM NCP1399 SIMPLIS MODEL MANUAL.PDF
ssuser1be9ce
?
June 2025 Top 10 Sites -Electrical and Electronics Engineering: An Internatio...
elelijjournal653
?
Kel.3_A_Review_on_Internet_of_Things_for_Defense_v3.pptx
Endang Saefullah
?
Decision support system in machine learning models for a face recognition-bas...
TELKOMNIKA JOURNAL
?
Designing for Tomorrow C Architecture¨s Role in the Sustainability Movement
BIM Services
?
Ad

Latex Symbols.pdf

  • 1. L ATEX Mathematical Symbols The more unusual symbols are not defined in base L A TEX (NFSS) and require usepackage{amssymb} 1 Greek and Hebrew letters α alpha κ kappa ψ psi z digamma ? Delta Θ Theta β beta λ lambda ρ rho ε varepsilon Γ Gamma Υ Upsilon χ chi ? mu σ sigma κ varkappa Λ Lambda Ξ Xi δ delta ν nu τ tau ? varphi ? Omega epsilon o o θ theta $ varpi Φ Phi ? aleph η eta ω omega υ upsilon % varrho Π Pi i beth γ gamma φ phi ξ xi ? varsigma Ψ Psi k daleth ι iota π pi ζ zeta ? vartheta Σ Sigma ??? gimel 2 L A TEX math constructs abc xyz frac{abc}{xyz} abc overline{abc} ? ★ abc overrightarrow{abc} f0 f¨ abc underline{abc} ○ ? abc overleftarrow{abc} 〔 abc sqrt{abc} c abc widehat{abc} z}|{ abc overbrace{abc} n 〔 abc sqrt[n]{abc} f abc widetilde{abc} abc |{z} underbrace{abc} 3 Delimiters | | { { b lfloor / / ? Uparrow x llcorner | vert } } c rfloor backslash ● uparrow y lrcorner k | h langle d lceil [ [ ? Downarrow p ulcorner k Vert i rangle e rceil ] ] ◎ downarrow q urcorner Use the pair lefts1 and rights2 to match height of delimiters s1 and s2 to the height of their contents, e.g., left| expr right| left{ expr right} leftVert expr right. 4 Variable-sized symbols (displayed formulae show larger version) P sum R int U biguplus L bigoplus W bigvee Q prod H oint T bigcap N bigotimes V bigwedge ` coprod RR iint S bigcup J bigodot F bigsqcup 5 Standard Function Names Function names should appear in Roman, not Italic, e.g., Correct: tan(at-npi) ?★ tan(at ? nπ) Incorrect: tan(at-npi) ?★ tan(at ? nπ) arccos arccos arcsin arcsin arctan arctan arg arg cos cos cosh cosh cot cot coth coth csc csc deg deg det det dim dim exp exp gcd gcd hom hom inf inf ker ker lg lg lim lim lim inf liminf lim sup limsup ln ln log log max max min min Pr Pr sec sec sin sin sinh sinh sup sup tan tan tanh tanh
  • 2. 6 Binary Operation/Relation Symbols ? ast \ pm ” cap C lhd ? star ? mp “ cup B rhd , cdot q amalg ] uplus / triangleleft ? circ odot u sqcap . triangleright ? bullet ominus t sqcup E unlhd bigcirc oplus … wedge D unrhd diamond oslash ‥ vee 5 bigtriangledown 〜 times ? otimes ? dagger 4 bigtriangleup ‖ div o wr ? ddagger setminus centerdot Box Z barwedge Y veebar ~ circledast boxplus f curlywedge g curlyvee } circledcirc boxminus e Cap d Cup  circleddash boxtimes 〕 bot top u dotplus boxdot | intercal i rightthreetimes divideontimes square [ doublebarwedge h leftthreetimes 《 equiv + leq − geq 〕 perp ゛ = cong ? prec succ | mid 6= neq preceq succeq k parallel ゛ sim ll gg ./ bowtie ' simeq ? subset ? supset o n Join 「 approx ? subseteq ? supseteq n ltimes asymp @ sqsubset A sqsupset o rtimes . = doteq v sqsubseteq w sqsupseteq ^ smile 『 propto a dashv ` vdash _ frown |= models ( in 3 ni / ( notin u approxeq 5 leqq = geqq ? lessgtr ゛ thicksim 6 leqslant geqslant Q lesseqgtr v backsim / lessapprox ' gtrapprox S lesseqqgtr w backsimeq ? lll ? ggg T gtreqqless , triangleq l lessdot m gtrdot R gtreqless $ circeq . lesssim gtrsim ? gtrless l bumpeq 0 eqslantless 1 eqslantgtr  backepsilon m Bumpeq - precsim % succsim G between + doteqdot w precapprox v succapprox t pitchfork 「 thickapprox b Subset c Supset p shortmid ; fallingdotseq j subseteqq k supseteqq a smallfrown : risingdotseq @ sqsubset A sqsupset ` smallsmile 『 varpropto 4 preccurlyeq succcurlyeq Vdash ÷ therefore 2 curlyeqprec 3 curlyeqsucc vDash × because J blacktriangleleft I blacktriangleright Vvdash P eqcirc E trianglelefteq D trianglerighteq q shortparallel 6= neq C vartriangleleft B vartriangleright / nshortparallel ncong nleq ngeq * nsubseteq - nmid nleqq ngeqq + nsupseteq ? nparallel nleqslant ngeqslant nsubseteqq . nshortmid 【 nless 】 ngtr # nsupseteqq / nshortparallel ? nprec nsucc ( subsetneq nsim npreceq nsucceq ) supsetneq 3 nVDash precnapprox succnapprox $ subsetneqq 2 nvDash precnsim succnsim % supsetneqq 0 nvdash lnapprox gnapprox varsubsetneq 6 ntriangleleft lneq gneq ! varsupsetneq 5 ntrianglelefteq lneqq gneqq varsubsetneqq 7 ntriangleright lnsim gnsim ' varsupsetneqq 4 ntrianglerighteq lvertneqq gvertneqq
  • 3. 7 Arrow symbols ○ leftarrow ○? longleftarrow ● uparrow ? Leftarrow ?= Longleftarrow ? Uparrow ★ rightarrow ?★ longrightarrow ◎ downarrow ? Rightarrow =? Longrightarrow ? Downarrow ? leftrightarrow ○★ longleftrightarrow l updownarrow ? Leftrightarrow ?? Longleftrightarrow m Updownarrow 7★ mapsto 7?★ longmapsto % nearrow ○- hookleftarrow ,★ hookrightarrow searrow ( leftharpoonup * rightharpoonup . swarrow ) leftharpoondown + rightharpoondown - nwarrow rightleftharpoons leadsto 99K dashrightarrow L99 dashleftarrow ? leftleftarrows leftrightarrows W Lleftarrow twoheadleftarrow leftarrowtail looparrowleft leftrightharpoons x curvearrowleft circlearrowleft Lsh upuparrows upharpoonleft downharpoonleft ( multimap ! leftrightsquigarrow ? rightrightarrows rightleftarrows ? rightrightarrows rightleftarrows twoheadrightarrow rightarrowtail # looparrowright rightleftharpoons y curvearrowright circlearrowright Rsh downdownarrows upharpoonright downharpoonright rightsquigarrow 8 nleftarrow 9 nrightarrow : nLeftarrow ; nRightarrow = nleftrightarrow nLeftrightarrow 8 Miscellaneous symbols ± infty ? forall k Bbbk ? wp ? nabla ? exists F bigstar ] angle ? partial @ nexists diagdown ] measuredangle ? eth ? emptyset diagup ^ sphericalangle ? clubsuit ? varnothing ? Diamond { complement ? diamondsuit ? imath ` Finv O triangledown ? heartsuit ? jmath a Game 4 triangle ? spadesuit ` ell ~ hbar M vartriangle , , , cdots RRRR iiiint } hslash blacklozenge . . . vdots RRR iiint ? lozenge blacksquare . . . ldots RR iint f mho N blacktriangle ... ddots ] sharp 0 prime H blacktrinagledown = Im [ flat square 8 backprime Re natural 〔 surd s circledS 9 Math mode accents a? acute{a} a? bar{a} ? A? Acute{Acute{A}} ? A? Bar{Bar{A}} a? breve{a} a? check{a} ? A? Breve{Breve{A}} ・ A? Check{Check{A}} a? ddot{a} a? dot{a} : A? Ddot{Ddot{A}} B A? Dot{Dot{A}} a? grave{a} a? hat{a} ` A? Grave{Grave{A}} ? A? Hat{Hat{A}} a? tilde{a} ~ a vec{a} ? A? Tilde{Tilde{A}} ~ ~ A Vec{Vec{A}}
  • 4. 10 Array environment, examples Simplest version: begin{array}{cols} row1 row2 . . . rowm end{array} where cols includes one character [lrc] for each column (with optional characters | inserted for vertical lines) and rowj includes character a total of (n ? 1) times to separate the n elements in the row. Examples: left( begin{array}{cc} 2tau 7phi-frac5{12} 3psi frac{pi}8 end{array} right) left( begin{array}{c} x y end{array} right) mbox{~and~} left[ begin{array}{cc|r} 3 4 5 1 3 729 end{array} right] 2τ 7φ ? 5 12 3ψ π 8 x y and 3 4 5 1 3 729 f(z) = left{ begin{array}{rcl} overline{overline{z^2}+cos z} mbox{for} |z|3 0 mbox{for} 3leq|z|leq5 sinoverline{z} mbox{for} |z|5 end{array}right. f(z) = ? ? ? z2 + cos z for |z| 3 0 for 3 + |z| + 5 sin z for |z| 5 11 Other Styles (math mode only) Caligraphic letters: $mathcal{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Mathbb letters: $mathbb{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Mathfrak letters: $mathfrak{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math Sans serif letters: $mathsf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math bold letters: $mathbf{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 Math bold italic letters: define defmathbi#1{textbf{em #1}} then use $mathbi{A}$ etc.: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c 1 2 3 12 Font sizes Math Mode: Z f?1 (x ? xa) dx ${displaystyle int f^{-1}(x-x_a),dx}$ R f?1 (x ? xa) dx ${textstyle int f^{-1}(x-x_a),dx}$ R f?1 (x?xa) dx ${scriptstyle int f^{-1}(x-x_a),dx}$ R f?1(x?xa) dx ${scriptscriptstyle int f^{-1}(x-x_a),dx}$ Text Mode: tiny = smallest scriptsize = very small footnotesize = smaller small = small normalsize = normal large = large Large = Large LARGE = LARGE huge = huge Huge = Huge 13 Text Mode: Accents and Symbols o? ¨{o} o? {o} o? ^{o} o? `{o} o? ~{o} o? ={o} s . d s o? .{o} o? u{o} o? H{o}  oo t{oo} o? c{o} o . d{o} s? r s o ? b{o} A? AA a? aa ? ss ? i ? j s? H s ? o  s t s s? v s ? O ? P ′ S ? ae ? AE ? dag ? ddag c copyright ? pounds