ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
8/1/2014
1
Lecture 2: Engineering Curves
1
Engineering Curves
• used in designing certain objects
Conic Sections
• Sections of a right circular cone obtained by
cutting the cone in different ways
• Depending on the position of the cutting plane
relative to the axis of cone, three conic sections
can be obtained
– ellipse,
– parabola and
– hyperbola
2
8/1/2014
2
Conic Sections
• An ellipse is obtained when a section
plane A–A, inclined to the axis cuts all
the generators of the cone.
• A parabola is obtained when a section
plane B–B, parallel to one of the
generators cuts the cone. Obviously, the
section plane will cut the base of the
cone.
• A hyperbola is obtained when a section
plane C–C, inclined to the axis cuts the
cone on one side of the axis.
• A rectangular hyperbola is obtained
when a section plane D–D, parallel to
the axis cuts the cone.
A
A
B
B
C
C
D
D
O
O
3
4
8/1/2014
3
Conic is defined as locus of a point moving in a plane such that the
ratio of its distance from a fixed point (F) to the fixed straight line is
always a constant. This ratio is called as eccentricity.
Ellipse: eccentricity is always <1
Parabola: eccentricity is always=1
Hyperbola: eccentricity is >1
The fixed point is called the Focus
The fixed line is called the Directrix
Axis is the line passing though the
focus and perpendicular to the
directrix
Vertex is a point at which the conic
cuts its axis VC
VF
e =
5
• Eccentricity is less than 1.
• Closed curve.
• The fixed points represent the foci.
• The sum of the distances of a point on the
ellipse from the two foci is equal to the major
axis
• The distance of any end of the minor axis
from any focus is equal to the half of the
major axis
Relationship between Major axis, Minor axis and Foci
• If major axis and minor axis are given, the
two fixed points F1 and F2 can be located
with the following fact
• If minor axis is given instead of the distance between the foci, then locate the foci F and
F’ by cutting the arcs on major axis with C as a center and radius= ½ major axis= OA
Ellipse
6
8/1/2014
4
An ellipse has two foci (F and F’), two directrices (AB and A’B’ ), two
axes (V–V’ and V 1–V 1’) and four vertices (V, V’, V 1 and V 1’ ). The
two axes are called the major axis and minor axis.
7
Methods for Generating Ellipse
1. Focus-Directrix Or Eccentricity Method
– General method of constructing any conics when the
distance of the focus from the directrix and its
eccentricity are given.
2. Concentric Method
– This method is applicable when the major axis and
minor axis of an ellipse are given.
3. Oblong Method
– This method is applicable when the major axis and
minor axis or the conjugate axes with the angle
between them is given.
8
8/1/2014
5
Types of Problems
• Focus-Directrix Or Eccentricity Method
– Draw an ellipse if the distance of the focus from the
directrix 50 mm and the eccentricity is 2/3
– Draw a parabola if the distance of the focus from the
directrix is 55 mm
– Draw a hyperbola of e = 4/3 if the distance of the focus
from the directrix = 60 mm
• Concentric Method
– Draw an ellipse having the major axis of 60 mm and the
minor axis of 40 mm
• Oblong Method
– Draw an ellipse having conjugate axes of 60 mm and 40
mm long and inclined at 750 to each other
9
F1
V1
D
D
1 2 3 4 5
11
21
31
41
51
C
V2
Focus-Directrix or Eccentricity Method
10
45
Slope of line is e
8/1/2014
6
Focus-Directrix or Eccentricity Method
11
Q.1: Draw an ellipse if the distance of focus from the directrix is 70 mm and the
eccentricity is 3/4.
1. Draw the directrix and axis as shown.
2. Mark F on axis such that CF 1= 70 mm.
3. Divide CF into 3 + 4 = 7 equal parts and mark V at the fourth division from C.
Now, e = FV/ CV = 3/4.
4. At V, erect a perpendicular VB = VF. Join CB.
5. Through F, draw a line at 45° to meet CB produced at D. Through D, drop a
perpendicular DV’ on CC’. Mark O at the midpoint of V– V’.
6. Mark a few points, 1, 2, 3, … on V– V’ and erect perpendiculars though them
meeting CD at 1’, 2’, 3’…. Also erect a perpendicular through O.
7. With F as a centre and radius = 1–1’, cut two arcs on the perpendicular through 1
to locate P1 and P1¢. Similarly, with F as a centre and radii = 2–2’, 3–3’, etc., cut
arcs on the corresponding perpendiculars to locate P/2 and P/2’, P/3 and P/3’,
etc. Also, cut similar arcs on the perpendicular through O to locate V1 and V1’.
Steps for Focus-Directrix or Eccentricity Method
12
8/1/2014
7
A B
C
D
O
1’ 2’ 3’
1
3
2
P1
P2
P3
Oblong Method
13
Steps for Oblong Method
Draw an ellipse with a 70 mm
long major axis and a 45 mm
long minor axis.
or
Draw an ellipse circumscribing
a rectangle having sides 70 mm
and 45 mm.
1. Draw the major axis AB = 70 mm and minor axis CD = 45 mm, bisecting each other
at right angles at O.
2. Draw a rectangle EFGH such that EF = AB and FG = CD.
3. Divide AO and AE into same number of equal parts, say 4. Number the divisions as
1, 2, 3 and 1’, 2’, 3’, starting from A.
4. Join C with 1, 2 and 3.
5. Join D with 1’ and extend it to meet C–1 at P1. Similarly, join D with 2’ and 3’ and
extend them to meet C–2 and C–3 respectively to locate P/2 and P/3. 14
8/1/2014
8
Concentric Circle Method
15
A B
C
D
Draw an ellipse having the major
axis of 70 mm and the minor axis
of 40 mm.
Draw the major axis AB = 70 mm
and minor axis CD = 40 mm,
bisecting each other at right angles
at O.
Draw two circles with AB and CD
as diameters. Divide both the
circles into 12 equal parts and
number the divisions as A, 1, 2, 3, …
10, B and C, 1’, 2’, 3’ … 10’, D.
Through 1, draw a line parallel to CD. Through 1’, draw a line parallel to AB. Mark P1 at
their intersection.
Obtain P/2, P4, P5, etc., in a similar way.
Draw a smooth closed curve through A– P1–P/2– C– P4– P5– B– P6– P7– D– P/9– P10–
A.
Concentric Circle Method
16
8/1/2014
9
Tangent and Normal at any point P
17
Draw ellipse using Focus-Directrix or Eccentricity Method
F
P
Q
Tangent
Normal
1. Mark the given point P and join
PF1 .
2. At F1 draw a line perpendicular to
PF1 to cut DD at Q.
3. Join QP and extend it. QP is the
tangent at P
4. Through P, draw a line NM
perpendicular to QP. NM is the
normal at P
18
8/1/2014
10
Tangent and Normal at any point P when Focus and Directrix are
not known
1. First obtain the foci F and
F′ by cutting the arcs on
major axis with C as a
centre and radius =OA
2. Obtain NN, the bisector of
∠FPF′. N-N is the
required normal
3. Draw TT perpendicular to
N-N at P. T-T is the
required tangent
19
Few Applications of Ellipse
Elliptical gear
Arch
Bullet nose
20
8/1/2014
11
Parabola
• A parabola is a conic whose eccentricity is equal to 1. It is an open-
end curve with a focus, a directrix and an axis.
• Any chord perpendicular to the axis is called a double ordinate.
• The double ordinate passing through the focus . i.e LL’ represents the
latus rectum
• The shortest distance of the vertex from any ordinate, is known as the
abscissa.
21
Methods for Generating Parabola
1. Focus-Directrix Or Eccentricity Method
– General method of constructing any conics when the distance of the
focus from the directrix
– For example, draw a parabola if the distance of the focus from the
directrix is 55 mm.
2. Rectangle Method and Parallelogram Method
– This method is applicable when the axis (or abscissa) and the base ( or
double ordinate) of a parabola are given or the conjugte axes with the
angle between them is given
– For example, draw a parabola having an abscissa of 30 mm and the
double ordinate are 70 mm, or
– Draw an parabola having conjugate axes of 60 mm and 40 mm long
and inclined at 750 to each other.
3. Tangent Method
– This method is applicable when the base and the inclination of
tangents at open ends of the parabola with the base are given
– For example, draw a parabola if the base is 70 mm and the tangents at
the base ends make 60° to the base..
22
8/1/2014
12
Focus-Directrix Or Eccentricity Method
• Distance of the focus from the directrix is known.
23
F
C C’
A
B
V
CV = VF
E EV = VF
D
Slope of CD is e = 1
1 2 3 4
1’
2’
3’
4’
Center = F
Radius = 1-1’
`
`
`
`
1. Draw directrix AB and axis CC’ as shown.
2. Mark F on CC’ such that CF = 60 mm.
3. Mark V at the midpoint of CF. Therefore, e = VF/
VC = 1.
4. At V, erect a perpendicular VB = VF. Join CB.
5. Mark a few points, say, 1, 2, 3, … on VC’ and erect
perpendiculars through them meeting CB
produced at 1’, 2’, 3’, …
6. With F as a centre and radius = 1–1’, cut two arcs
on the perpendicular through 1 to locate P1 and
P1’. Similarly, with F as a centre and radii = 2–2’,
3–3’, etc., cut arcs on the corresponding
perpendiculars to locate P2 and P2’, P3 and P3’,
etc.
7. Draw a smooth curve passing through V, P1, P2,
P3 … P3
Draw a parabola if the distance of the focus from the directrix is 60 mm.
Steps for Focus-Directrix or Eccentricity Method
24
8/1/2014
13
Rectangle Method
• Abscissa and ordinate are known.
25
A B
AB-Ordinate
C
D
CD-Abscissa
1 2
1’
2’
1. Draw the double ordinate RS = 70
mm. At midpoint K erect a
perpendicular KV = 30 mm to
represent the abscissa.
2. Construct a rectangle RSMN such
that SM = KV.
3. Divide RN and RK into the same
number of equal parts, say 5.
Number the divisions as 1, 2, 3, 4
and 1’, 2’, 3’, 4’, starting from R.
4. Join V–1, V–2, V–3 and V–4.
Q.1: Draw a parabola having an abscissa of 30 mm and the double ordinate of 70 mm.
5. Through 1’, 2’, 3’ and 4’, draw lines parallel to KV to meet V–1 at P1, V–2 at P2, V–3 at P3 and V–4 at
P4, respectively.
6. Obtain P5, P6, P7 and P8 in the other half of the rectangle in a similar way. Alternatively, these
points can be obtained by drawing lines parallel to RS through P1, P2, P3 and P4. For example, draw
P1– P8 such that P1– x = x– P8.
7. Join P1, P2, P3 … P8 to obtain the parabola.
Steps for Rectangle Method
26
8/1/2014
14
Steps for Tangent and Normal at a
point p on parabola
1. Join PF. Draw PQ parallel to the axis.
2. Draw the bisector T– T of – FPQ to represent the required tangent.
3. Draw normal N– N perpendicular T– T at P.
27
Steps for Parallelogram Method
Q.1: Draw a parabola of base 100 mm and axis 50 mm if the axis makes 70°
to the base.
1. Draw the base RS = 100 mm and through its midpoint K, draw the axis KV
= 50 mm, inclined at 70° to RS.
2. Draw a parallelogram RSMN such that SM is parallel and equal to KV.
3. Follow steps as in rectangle method
28
8/1/2014
15
Tangent Method
• Base and inclination of tangents are known.
29
R S
L
RS-Base
RL and SL are tangents
1
2
3 1’
2’
3’
P
S
V
VR=VS
R
Tangent
Method to draw tangent at a point on parabola 1. First locate the point P on the curve
2. Draw the ordinate PS 3. On LK, mark T such that TV =VS
4. Join TP and extend to obtain tangent TT 5.Draw normal N-N perpendicular to T-T at P
1. Draw the base RS = 70 mm. Through R and
S, draw the lines at 60° to the base, meeting
at L.
2. Divide RL and SL into the same number of
equal parts, say 6. Number the divisions as 1,
2, 3 … and 1’, 2’, 3’, … as shown.
3. Join 1–1’, 2–2’, 3–3’, ….
4. Draw a smooth curve, starting from R and
ending at S and tangent to 1–1’, 2–2’, 3–3’,
etc., at P1, P2, P3, etc., respectively
Q. Draw a parabola if the base is 70 mm and the tangents at the base ends make 60° to
the base.
Steps for Tangent Method
30
8/1/2014
16
To find the focus and the directrix of a parabola given its axis
Tangent and Normal at any point P when Focus and
Directrix are not known
1. Draw the ordinate PQ
2. Find the abscissa VQ
3. Mark R on CA such that RV=VQ
4. Draw the normal NM perpendicular to RP at P
1. Mark any point P on the parabola
2. Draw a perpendicular PQ to the given axis
3. Mark a point R on the axis such that RV=VQ
4. Focus: Join RP. Draw a perpendicular bisector of RP
cutting the axis at F, F is the focus
5. Directrix: Mark O on the axis such that OV= VF. Through
O draw the directrix DD perpendicular to the axis 31
Few Applications of Parabola
32

More Related Content

Similar to Lecture 2 Engineering curves.pdf (20)

Engg. curves
Engg. curvesEngg. curves
Engg. curves
Harry Patel
Ìý
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptxEG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
Tulasi72
Ìý
Engineering Curves
Engineering CurvesEngineering Curves
Engineering Curves
Student
Ìý
Curves1(thedirectdata[1].com)
Curves1(thedirectdata[1].com)Curves1(thedirectdata[1].com)
Curves1(thedirectdata[1].com)
Ravi Patel
Ìý
Engineering] Drawing Curve1
Engineering] Drawing   Curve1Engineering] Drawing   Curve1
Engineering] Drawing Curve1
C.G.P.I.T
Ìý
Curves1
Curves1  Curves1
Curves1
23055
Ìý
Curve1
Curve1Curve1
Curve1
gtuautonomous
Ìý
Curve1
Curve1Curve1
Curve1
coolunderjerk
Ìý
Curves2
Curves2Curves2
Curves2
shubham kanungo
Ìý
Curves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Curves2 -ENGINEERING DRAWING - RGPV,BHOPALCurves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Curves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Abhishek Kandare
Ìý
I-_UNIT-_CURVES [Autosaved].pptx
I-_UNIT-_CURVES [Autosaved].pptxI-_UNIT-_CURVES [Autosaved].pptx
I-_UNIT-_CURVES [Autosaved].pptx
sharonmarishkawilfre
Ìý
Engineering curves
Engineering curvesEngineering curves
Engineering curves
PatelHarsh50
Ìý
Engineering curves
Engineering curvesEngineering curves
Engineering curves
Sujith Gayantha
Ìý
Eg unit 1 plane curves
Eg unit 1 plane curvesEg unit 1 plane curves
Eg unit 1 plane curves
ganesasmoorthy raju
Ìý
EG UNIT 1PLANE CURVES.ppt
EG UNIT 1PLANE CURVES.pptEG UNIT 1PLANE CURVES.ppt
EG UNIT 1PLANE CURVES.ppt
Ganesamoorthy14
Ìý
I-_UNIT-_CURVES.pdf
I-_UNIT-_CURVES.pdfI-_UNIT-_CURVES.pdf
I-_UNIT-_CURVES.pdf
OnkarLagshetti
Ìý
Engineering curves (CONICS).pptx
Engineering curves (CONICS).pptxEngineering curves (CONICS).pptx
Engineering curves (CONICS).pptx
Swapnil Vegad
Ìý
Engineering Curves
Engineering CurvesEngineering Curves
Engineering Curves
Vrushang Sangani
Ìý
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
AmeliaEnakirerhi
Ìý
Eg curves
Eg curvesEg curves
Eg curves
Rishabh Daga
Ìý
Engg. curves
Engg. curvesEngg. curves
Engg. curves
Harry Patel
Ìý
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptxEG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
EG Presentation (CONIC SECTIONS AND INVOLUTES) (1).pptx
Tulasi72
Ìý
Engineering Curves
Engineering CurvesEngineering Curves
Engineering Curves
Student
Ìý
Curves1(thedirectdata[1].com)
Curves1(thedirectdata[1].com)Curves1(thedirectdata[1].com)
Curves1(thedirectdata[1].com)
Ravi Patel
Ìý
Engineering] Drawing Curve1
Engineering] Drawing   Curve1Engineering] Drawing   Curve1
Engineering] Drawing Curve1
C.G.P.I.T
Ìý
Curves1
Curves1  Curves1
Curves1
23055
Ìý
Curves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Curves2 -ENGINEERING DRAWING - RGPV,BHOPALCurves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Curves2 -ENGINEERING DRAWING - RGPV,BHOPAL
Abhishek Kandare
Ìý
I-_UNIT-_CURVES [Autosaved].pptx
I-_UNIT-_CURVES [Autosaved].pptxI-_UNIT-_CURVES [Autosaved].pptx
I-_UNIT-_CURVES [Autosaved].pptx
sharonmarishkawilfre
Ìý
Engineering curves
Engineering curvesEngineering curves
Engineering curves
PatelHarsh50
Ìý
Engineering curves
Engineering curvesEngineering curves
Engineering curves
Sujith Gayantha
Ìý
EG UNIT 1PLANE CURVES.ppt
EG UNIT 1PLANE CURVES.pptEG UNIT 1PLANE CURVES.ppt
EG UNIT 1PLANE CURVES.ppt
Ganesamoorthy14
Ìý
I-_UNIT-_CURVES.pdf
I-_UNIT-_CURVES.pdfI-_UNIT-_CURVES.pdf
I-_UNIT-_CURVES.pdf
OnkarLagshetti
Ìý
Engineering curves (CONICS).pptx
Engineering curves (CONICS).pptxEngineering curves (CONICS).pptx
Engineering curves (CONICS).pptx
Swapnil Vegad
Ìý
CHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptxCHG 709 - LECTURE 4.pptx
CHG 709 - LECTURE 4.pptx
AmeliaEnakirerhi
Ìý

More from veenatanmaipatlolla (11)

Introduction To Vector Integrals.pptx
Introduction To Vector Integrals.pptxIntroduction To Vector Integrals.pptx
Introduction To Vector Integrals.pptx
veenatanmaipatlolla
Ìý
227r1a1237.pptx
227r1a1237.pptx227r1a1237.pptx
227r1a1237.pptx
veenatanmaipatlolla
Ìý
DS THEORY 35.pptx
DS THEORY 35.pptxDS THEORY 35.pptx
DS THEORY 35.pptx
veenatanmaipatlolla
Ìý
Mathematics PPT.pptx
Mathematics PPT.pptxMathematics PPT.pptx
Mathematics PPT.pptx
veenatanmaipatlolla
Ìý
LinkedDoublyLists.ppt
LinkedDoublyLists.pptLinkedDoublyLists.ppt
LinkedDoublyLists.ppt
veenatanmaipatlolla
Ìý
EC-PPT.pptx
EC-PPT.pptxEC-PPT.pptx
EC-PPT.pptx
veenatanmaipatlolla
Ìý
G.Harshith%20Ec%20Lab.pptx
G.Harshith%20Ec%20Lab.pptxG.Harshith%20Ec%20Lab.pptx
G.Harshith%20Ec%20Lab.pptx
veenatanmaipatlolla
Ìý
200210mstrs_adler.pdf
200210mstrs_adler.pdf200210mstrs_adler.pdf
200210mstrs_adler.pdf
veenatanmaipatlolla
Ìý
13_fuel_and_combustion_1.ppt
13_fuel_and_combustion_1.ppt13_fuel_and_combustion_1.ppt
13_fuel_and_combustion_1.ppt
veenatanmaipatlolla
Ìý
Matrix_PPT.pptx
Matrix_PPT.pptxMatrix_PPT.pptx
Matrix_PPT.pptx
veenatanmaipatlolla
Ìý
KIRCHOFF’S LAW.pptx
KIRCHOFF’S LAW.pptxKIRCHOFF’S LAW.pptx
KIRCHOFF’S LAW.pptx
veenatanmaipatlolla
Ìý

Recently uploaded (20)

health safety and environment presentation
health safety and environment presentationhealth safety and environment presentation
health safety and environment presentation
ssuserc606c7
Ìý
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Ìý
Industrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products ProfileIndustrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products Profile
zebcoeng
Ìý
Equipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding ProcessEquipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding Process
AhmadKamil87
Ìý
Embedded System intro Embedded System intro.ppt
Embedded System intro Embedded System intro.pptEmbedded System intro Embedded System intro.ppt
Embedded System intro Embedded System intro.ppt
23ucc580
Ìý
Lecture -3 Cold water supply system.pptx
Lecture -3 Cold water supply system.pptxLecture -3 Cold water supply system.pptx
Lecture -3 Cold water supply system.pptx
rabiaatif2
Ìý
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).pptCONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
suaktonny
Ìý
Power Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.pptPower Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.ppt
Aniket_1415
Ìý
G8 mini project for alcohol detection and engine lock system with GPS tracki...
G8 mini project for  alcohol detection and engine lock system with GPS tracki...G8 mini project for  alcohol detection and engine lock system with GPS tracki...
G8 mini project for alcohol detection and engine lock system with GPS tracki...
sahillanjewar294
Ìý
Multi objective genetic approach with Ranking
Multi objective genetic approach with RankingMulti objective genetic approach with Ranking
Multi objective genetic approach with Ranking
namisha18
Ìý
How to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using ArduinoHow to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using Arduino
CircuitDigest
Ìý
Mathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptxMathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptx
ppkmurthy2006
Ìý
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
Ìý
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
Ìý
Wireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdfWireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdf
AbhinandanMishra30
Ìý
GREEN BULIDING PPT FOR THE REFRENACE.PPT
GREEN BULIDING PPT FOR THE REFRENACE.PPTGREEN BULIDING PPT FOR THE REFRENACE.PPT
GREEN BULIDING PPT FOR THE REFRENACE.PPT
kamalkeerthan61
Ìý
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVName.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
MerijimArsedelPalmad1
Ìý
Piping-and-pipeline-calculations-manual.pdf
Piping-and-pipeline-calculations-manual.pdfPiping-and-pipeline-calculations-manual.pdf
Piping-and-pipeline-calculations-manual.pdf
OMI0721
Ìý
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
Ìý
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
Ìý
health safety and environment presentation
health safety and environment presentationhealth safety and environment presentation
health safety and environment presentation
ssuserc606c7
Ìý
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Ìý
Industrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products ProfileIndustrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products Profile
zebcoeng
Ìý
Equipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding ProcessEquipment for Gas Metal Arc Welding Process
Equipment for Gas Metal Arc Welding Process
AhmadKamil87
Ìý
Embedded System intro Embedded System intro.ppt
Embedded System intro Embedded System intro.pptEmbedded System intro Embedded System intro.ppt
Embedded System intro Embedded System intro.ppt
23ucc580
Ìý
Lecture -3 Cold water supply system.pptx
Lecture -3 Cold water supply system.pptxLecture -3 Cold water supply system.pptx
Lecture -3 Cold water supply system.pptx
rabiaatif2
Ìý
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).pptCONTRACTOR ALL RISK INSURANCESAR (1).ppt
CONTRACTOR ALL RISK INSURANCESAR (1).ppt
suaktonny
Ìý
Power Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.pptPower Point Presentation for Electrical Engineering 3-phase.ppt
Power Point Presentation for Electrical Engineering 3-phase.ppt
Aniket_1415
Ìý
G8 mini project for alcohol detection and engine lock system with GPS tracki...
G8 mini project for  alcohol detection and engine lock system with GPS tracki...G8 mini project for  alcohol detection and engine lock system with GPS tracki...
G8 mini project for alcohol detection and engine lock system with GPS tracki...
sahillanjewar294
Ìý
Multi objective genetic approach with Ranking
Multi objective genetic approach with RankingMulti objective genetic approach with Ranking
Multi objective genetic approach with Ranking
namisha18
Ìý
How to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using ArduinoHow to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using Arduino
CircuitDigest
Ìý
Mathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptxMathematics_behind_machine_learning_INT255.pptx
Mathematics_behind_machine_learning_INT255.pptx
ppkmurthy2006
Ìý
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
Ìý
eng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfdddddddddddddddddddddddeng funda notes.pdfddddddddddddddddddddddd
eng funda notes.pdfddddddddddddddddddddddd
aayushkumarsinghec22
Ìý
Wireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdfWireless-Charger presentation for seminar .pdf
Wireless-Charger presentation for seminar .pdf
AbhinandanMishra30
Ìý
GREEN BULIDING PPT FOR THE REFRENACE.PPT
GREEN BULIDING PPT FOR THE REFRENACE.PPTGREEN BULIDING PPT FOR THE REFRENACE.PPT
GREEN BULIDING PPT FOR THE REFRENACE.PPT
kamalkeerthan61
Ìý
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVName.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Name.docxVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
MerijimArsedelPalmad1
Ìý
Piping-and-pipeline-calculations-manual.pdf
Piping-and-pipeline-calculations-manual.pdfPiping-and-pipeline-calculations-manual.pdf
Piping-and-pipeline-calculations-manual.pdf
OMI0721
Ìý
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
Ìý

Lecture 2 Engineering curves.pdf

  • 1. 8/1/2014 1 Lecture 2: Engineering Curves 1 Engineering Curves • used in designing certain objects Conic Sections • Sections of a right circular cone obtained by cutting the cone in different ways • Depending on the position of the cutting plane relative to the axis of cone, three conic sections can be obtained – ellipse, – parabola and – hyperbola 2
  • 2. 8/1/2014 2 Conic Sections • An ellipse is obtained when a section plane A–A, inclined to the axis cuts all the generators of the cone. • A parabola is obtained when a section plane B–B, parallel to one of the generators cuts the cone. Obviously, the section plane will cut the base of the cone. • A hyperbola is obtained when a section plane C–C, inclined to the axis cuts the cone on one side of the axis. • A rectangular hyperbola is obtained when a section plane D–D, parallel to the axis cuts the cone. A A B B C C D D O O 3 4
  • 3. 8/1/2014 3 Conic is defined as locus of a point moving in a plane such that the ratio of its distance from a fixed point (F) to the fixed straight line is always a constant. This ratio is called as eccentricity. Ellipse: eccentricity is always <1 Parabola: eccentricity is always=1 Hyperbola: eccentricity is >1 The fixed point is called the Focus The fixed line is called the Directrix Axis is the line passing though the focus and perpendicular to the directrix Vertex is a point at which the conic cuts its axis VC VF e = 5 • Eccentricity is less than 1. • Closed curve. • The fixed points represent the foci. • The sum of the distances of a point on the ellipse from the two foci is equal to the major axis • The distance of any end of the minor axis from any focus is equal to the half of the major axis Relationship between Major axis, Minor axis and Foci • If major axis and minor axis are given, the two fixed points F1 and F2 can be located with the following fact • If minor axis is given instead of the distance between the foci, then locate the foci F and F’ by cutting the arcs on major axis with C as a center and radius= ½ major axis= OA Ellipse 6
  • 4. 8/1/2014 4 An ellipse has two foci (F and F’), two directrices (AB and A’B’ ), two axes (V–V’ and V 1–V 1’) and four vertices (V, V’, V 1 and V 1’ ). The two axes are called the major axis and minor axis. 7 Methods for Generating Ellipse 1. Focus-Directrix Or Eccentricity Method – General method of constructing any conics when the distance of the focus from the directrix and its eccentricity are given. 2. Concentric Method – This method is applicable when the major axis and minor axis of an ellipse are given. 3. Oblong Method – This method is applicable when the major axis and minor axis or the conjugate axes with the angle between them is given. 8
  • 5. 8/1/2014 5 Types of Problems • Focus-Directrix Or Eccentricity Method – Draw an ellipse if the distance of the focus from the directrix 50 mm and the eccentricity is 2/3 – Draw a parabola if the distance of the focus from the directrix is 55 mm – Draw a hyperbola of e = 4/3 if the distance of the focus from the directrix = 60 mm • Concentric Method – Draw an ellipse having the major axis of 60 mm and the minor axis of 40 mm • Oblong Method – Draw an ellipse having conjugate axes of 60 mm and 40 mm long and inclined at 750 to each other 9 F1 V1 D D 1 2 3 4 5 11 21 31 41 51 C V2 Focus-Directrix or Eccentricity Method 10 45 Slope of line is e
  • 6. 8/1/2014 6 Focus-Directrix or Eccentricity Method 11 Q.1: Draw an ellipse if the distance of focus from the directrix is 70 mm and the eccentricity is 3/4. 1. Draw the directrix and axis as shown. 2. Mark F on axis such that CF 1= 70 mm. 3. Divide CF into 3 + 4 = 7 equal parts and mark V at the fourth division from C. Now, e = FV/ CV = 3/4. 4. At V, erect a perpendicular VB = VF. Join CB. 5. Through F, draw a line at 45° to meet CB produced at D. Through D, drop a perpendicular DV’ on CC’. Mark O at the midpoint of V– V’. 6. Mark a few points, 1, 2, 3, … on V– V’ and erect perpendiculars though them meeting CD at 1’, 2’, 3’…. Also erect a perpendicular through O. 7. With F as a centre and radius = 1–1’, cut two arcs on the perpendicular through 1 to locate P1 and P1¢. Similarly, with F as a centre and radii = 2–2’, 3–3’, etc., cut arcs on the corresponding perpendiculars to locate P/2 and P/2’, P/3 and P/3’, etc. Also, cut similar arcs on the perpendicular through O to locate V1 and V1’. Steps for Focus-Directrix or Eccentricity Method 12
  • 7. 8/1/2014 7 A B C D O 1’ 2’ 3’ 1 3 2 P1 P2 P3 Oblong Method 13 Steps for Oblong Method Draw an ellipse with a 70 mm long major axis and a 45 mm long minor axis. or Draw an ellipse circumscribing a rectangle having sides 70 mm and 45 mm. 1. Draw the major axis AB = 70 mm and minor axis CD = 45 mm, bisecting each other at right angles at O. 2. Draw a rectangle EFGH such that EF = AB and FG = CD. 3. Divide AO and AE into same number of equal parts, say 4. Number the divisions as 1, 2, 3 and 1’, 2’, 3’, starting from A. 4. Join C with 1, 2 and 3. 5. Join D with 1’ and extend it to meet C–1 at P1. Similarly, join D with 2’ and 3’ and extend them to meet C–2 and C–3 respectively to locate P/2 and P/3. 14
  • 8. 8/1/2014 8 Concentric Circle Method 15 A B C D Draw an ellipse having the major axis of 70 mm and the minor axis of 40 mm. Draw the major axis AB = 70 mm and minor axis CD = 40 mm, bisecting each other at right angles at O. Draw two circles with AB and CD as diameters. Divide both the circles into 12 equal parts and number the divisions as A, 1, 2, 3, … 10, B and C, 1’, 2’, 3’ … 10’, D. Through 1, draw a line parallel to CD. Through 1’, draw a line parallel to AB. Mark P1 at their intersection. Obtain P/2, P4, P5, etc., in a similar way. Draw a smooth closed curve through A– P1–P/2– C– P4– P5– B– P6– P7– D– P/9– P10– A. Concentric Circle Method 16
  • 9. 8/1/2014 9 Tangent and Normal at any point P 17 Draw ellipse using Focus-Directrix or Eccentricity Method F P Q Tangent Normal 1. Mark the given point P and join PF1 . 2. At F1 draw a line perpendicular to PF1 to cut DD at Q. 3. Join QP and extend it. QP is the tangent at P 4. Through P, draw a line NM perpendicular to QP. NM is the normal at P 18
  • 10. 8/1/2014 10 Tangent and Normal at any point P when Focus and Directrix are not known 1. First obtain the foci F and F′ by cutting the arcs on major axis with C as a centre and radius =OA 2. Obtain NN, the bisector of ∠FPF′. N-N is the required normal 3. Draw TT perpendicular to N-N at P. T-T is the required tangent 19 Few Applications of Ellipse Elliptical gear Arch Bullet nose 20
  • 11. 8/1/2014 11 Parabola • A parabola is a conic whose eccentricity is equal to 1. It is an open- end curve with a focus, a directrix and an axis. • Any chord perpendicular to the axis is called a double ordinate. • The double ordinate passing through the focus . i.e LL’ represents the latus rectum • The shortest distance of the vertex from any ordinate, is known as the abscissa. 21 Methods for Generating Parabola 1. Focus-Directrix Or Eccentricity Method – General method of constructing any conics when the distance of the focus from the directrix – For example, draw a parabola if the distance of the focus from the directrix is 55 mm. 2. Rectangle Method and Parallelogram Method – This method is applicable when the axis (or abscissa) and the base ( or double ordinate) of a parabola are given or the conjugte axes with the angle between them is given – For example, draw a parabola having an abscissa of 30 mm and the double ordinate are 70 mm, or – Draw an parabola having conjugate axes of 60 mm and 40 mm long and inclined at 750 to each other. 3. Tangent Method – This method is applicable when the base and the inclination of tangents at open ends of the parabola with the base are given – For example, draw a parabola if the base is 70 mm and the tangents at the base ends make 60° to the base.. 22
  • 12. 8/1/2014 12 Focus-Directrix Or Eccentricity Method • Distance of the focus from the directrix is known. 23 F C C’ A B V CV = VF E EV = VF D Slope of CD is e = 1 1 2 3 4 1’ 2’ 3’ 4’ Center = F Radius = 1-1’ ` ` ` ` 1. Draw directrix AB and axis CC’ as shown. 2. Mark F on CC’ such that CF = 60 mm. 3. Mark V at the midpoint of CF. Therefore, e = VF/ VC = 1. 4. At V, erect a perpendicular VB = VF. Join CB. 5. Mark a few points, say, 1, 2, 3, … on VC’ and erect perpendiculars through them meeting CB produced at 1’, 2’, 3’, … 6. With F as a centre and radius = 1–1’, cut two arcs on the perpendicular through 1 to locate P1 and P1’. Similarly, with F as a centre and radii = 2–2’, 3–3’, etc., cut arcs on the corresponding perpendiculars to locate P2 and P2’, P3 and P3’, etc. 7. Draw a smooth curve passing through V, P1, P2, P3 … P3 Draw a parabola if the distance of the focus from the directrix is 60 mm. Steps for Focus-Directrix or Eccentricity Method 24
  • 13. 8/1/2014 13 Rectangle Method • Abscissa and ordinate are known. 25 A B AB-Ordinate C D CD-Abscissa 1 2 1’ 2’ 1. Draw the double ordinate RS = 70 mm. At midpoint K erect a perpendicular KV = 30 mm to represent the abscissa. 2. Construct a rectangle RSMN such that SM = KV. 3. Divide RN and RK into the same number of equal parts, say 5. Number the divisions as 1, 2, 3, 4 and 1’, 2’, 3’, 4’, starting from R. 4. Join V–1, V–2, V–3 and V–4. Q.1: Draw a parabola having an abscissa of 30 mm and the double ordinate of 70 mm. 5. Through 1’, 2’, 3’ and 4’, draw lines parallel to KV to meet V–1 at P1, V–2 at P2, V–3 at P3 and V–4 at P4, respectively. 6. Obtain P5, P6, P7 and P8 in the other half of the rectangle in a similar way. Alternatively, these points can be obtained by drawing lines parallel to RS through P1, P2, P3 and P4. For example, draw P1– P8 such that P1– x = x– P8. 7. Join P1, P2, P3 … P8 to obtain the parabola. Steps for Rectangle Method 26
  • 14. 8/1/2014 14 Steps for Tangent and Normal at a point p on parabola 1. Join PF. Draw PQ parallel to the axis. 2. Draw the bisector T– T of – FPQ to represent the required tangent. 3. Draw normal N– N perpendicular T– T at P. 27 Steps for Parallelogram Method Q.1: Draw a parabola of base 100 mm and axis 50 mm if the axis makes 70° to the base. 1. Draw the base RS = 100 mm and through its midpoint K, draw the axis KV = 50 mm, inclined at 70° to RS. 2. Draw a parallelogram RSMN such that SM is parallel and equal to KV. 3. Follow steps as in rectangle method 28
  • 15. 8/1/2014 15 Tangent Method • Base and inclination of tangents are known. 29 R S L RS-Base RL and SL are tangents 1 2 3 1’ 2’ 3’ P S V VR=VS R Tangent Method to draw tangent at a point on parabola 1. First locate the point P on the curve 2. Draw the ordinate PS 3. On LK, mark T such that TV =VS 4. Join TP and extend to obtain tangent TT 5.Draw normal N-N perpendicular to T-T at P 1. Draw the base RS = 70 mm. Through R and S, draw the lines at 60° to the base, meeting at L. 2. Divide RL and SL into the same number of equal parts, say 6. Number the divisions as 1, 2, 3 … and 1’, 2’, 3’, … as shown. 3. Join 1–1’, 2–2’, 3–3’, …. 4. Draw a smooth curve, starting from R and ending at S and tangent to 1–1’, 2–2’, 3–3’, etc., at P1, P2, P3, etc., respectively Q. Draw a parabola if the base is 70 mm and the tangents at the base ends make 60° to the base. Steps for Tangent Method 30
  • 16. 8/1/2014 16 To find the focus and the directrix of a parabola given its axis Tangent and Normal at any point P when Focus and Directrix are not known 1. Draw the ordinate PQ 2. Find the abscissa VQ 3. Mark R on CA such that RV=VQ 4. Draw the normal NM perpendicular to RP at P 1. Mark any point P on the parabola 2. Draw a perpendicular PQ to the given axis 3. Mark a point R on the axis such that RV=VQ 4. Focus: Join RP. Draw a perpendicular bisector of RP cutting the axis at F, F is the focus 5. Directrix: Mark O on the axis such that OV= VF. Through O draw the directrix DD perpendicular to the axis 31 Few Applications of Parabola 32