際際滷

際際滷Share a Scribd company logo
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 1 -- http://ebook.here.vn
1.ph測ng trnh1.ph測ng trnh1.ph測ng trnh1.ph測ng trnh bt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其n
a.ph測ng trnh c測 b其n:
D孫ng ph測ng trnh:
錚
錚
錚


=
)()(
0)(
)()( 2
xgxf
xg
xgxf (nu g(x) c達 TX則 l R)
b.Bt ph測ng trnh c測 b其n:
D孫ng 1:
錚
錚
錚
錚
錚
錚
錚
錚
錚


錚
錚
錚
<

>
)()(
0)(
0)(
0)(
)()(
2
xgxf
xg
xg
xf
xgxf
D孫ng 2:
( )
( )
( ) ( )錚
錚
錚
錚
錚
<

>
<
xgxf
xf
xg
xgxf
2
0
0
)()(
Ch坦 箪: Khi h ch淡a t探 hai biu th淡c c即n bc hai tr谷 l捉n , 速 c達 th 速a v d孫ng c測 b其n
, ta l m nh sau:
+ 則t m辿t h 速iu kin cho tt c其 c存c c即n 速u c達 ngha .
+ Chuyn v hoc 速t 速iu kin 速 hai v 速u kh束ng 息m .
+ Bnh ph測ng hai v .
+ Tip t担c cho 速n khi ht c即n .
b袖i tp 存p d担ng
B i 1.1: Gi其i c存c ph測ng trnh sau:
)1(3253.1 =+ xx
)2(632.2 xx =+
Gi其i1:
Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
錚器3
錚
錚
錚
錚器3
錚
錚
錚
=
=

=+

2
7
2
014154
2
3
2 x
x
xx
x
Gi其i2:
Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
3
113
6
03314
6
2
=
錚
錚
錚
==


錚
錚
錚
=+

x
xx
x
xx
x
B i 1.2 Gi其i ph測ng trnh sau
)1(1266.1 2
=+ xxx (則H X息y D湛ng -2001).
Gi其i:
Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 2 -- http://ebook.here.vn
1
1
2
1
)12(66
2
1
22
=
錚器3
錚
錚
錚
=

錚器3
錚
錚
錚

=+

x
x
x
xxx
x
B i 1.3 Gi其i ph測ng trnh
321 =++ xx
Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h:
2
)4()2)(1(_
41
4)2)(1(
1
2
=
錚
錚
錚
錚
錚
錚
=
も

=+

 x
xxx
x
xxx
x
B i 1.4: Gi其i ph測ng trnh
231 = xxx
Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h:
3
326
3
326
3
326
43
0883
43
6524
3
231
3
22
+
=
錚
錚
錚
錚
錚

=
+
=
も

錚
錚
錚
=+
も

錚
錚
錚
+=


錚
錚
錚
+=

x
xx
x
xx
x
xxx
x
xxx
x
--
B i 1.5: Gi其i ph測ng trnh
xxxx +=+ 1
3
2
1 2
(則HQG H N辿i 2000)
Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h:
錚器3
錚
錚
錚
錚器3
錚
錚
錚
=
も

+=++
も
22222
3
2
3
2
3
2
10
21
3
4
3
2
3
2
1
10
xxxx
x
xxxxxx
x
錚
錚
錚
=
=

錚
錚
錚
==
も

錚
錚
錚
=
も

1
0
10
10
0)1(
10
22
x
x
xx
x
xxxx
x
B i 1.6: Gi其i ph測ng trnh
( ) 3428316643 =+ xx
Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h:
( ) 2
2
2
2
4
3
3428316643
4
3
=
錚
錚
錚
錚器4
錚
錚
=


錚器3
錚
錚
錚
=+

x
x
x
xx
x
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 3 -- http://ebook.here.vn
B i 1.7: Gi其i bt ph測ng trnh:
27593137 も xxx (則H DL Ph測ng 則束ng -2001)
則iu kin:
5
27
x
Bt ph測ng trnh 速 cho t測ng 速測ng v鱈i:
錚
錚
錚
錚
錚
+も

93275137
5
27
xxx
x
( )( ) ( )( )
23
59
65762229
044345859
23
5
27
23275932
5
27
275932368137
5
27
2
も
+

錚
錚
錚
錚
錚
+
も

錚
錚
錚
錚
錚
モ


錚
錚
錚
錚
錚
+も


x
xx
x
xxx
x
xxxx
x
B i tp l m th捉m:
B i 1: (PP B則 T則)
2 2
2 2
2
2
1. 3 2 2 1; 2. 3 9 1 2
3. 4 6 4; 4. 2 4 2
5. 3 9 1 | 2 |; 6. 2 3 0;
7. 1 1;
x x x x x x
x x x x x x
x x x x x
x x
 + =   + = 
 + = + + + = 
 + =   + =
+ + =
B i 2: (PP B則 T則)
1. 3 6 3;
2. 3 2 1 3;
3. 3 2 1;
4. 9 5 2 4;
5. 3 4 2 1 3;
6. 5 1 3 2 1 0;
x x
x x
x x
x x
x x x
x x x
+ +  =
 +  =
+   =
+ =  +
+  + = +
     =
7. 3 4 4 2 ;x x x+ + + =
8. 5 5 10 5 15 10;x x x +  = 
9. 4 1 1 2 ;x x x+   =
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 4 -- http://ebook.here.vn
2
10. 3 2 1 2;
11. 1 5 1 3 2
x x x
x x x
 +  + + =
   = 
12. 1 9 2 12x x x+   = 
2 2
13. 5 8 4 5x x x x+  + +  =
2 2
14. 3 5 8 3 5 1 1x x x x+ +  + + =
2 2
15. 9 7 2 5 1 3 2 1x x x x x+   =     
2 2 2
2
16. 3 6 16 2 2 2 4
3 1 1 4 2
17.
3 9 9
x x x x x x
x
x x x
+ + + + = + +
+
= + +
2
18. 1 2 5x x x =  
19. 11 11 4x x x x+ + +  + =
20. 1 1 8x x x+  =  +
--------------------------------------------------------------------------
2.ph測ng ph存p 則t m辿t n ph担
D孫ng 1: Gi其i ph測ng trnh:
( ) ( ) 0=++ CxfBxAf
Ph測ng ph存p gi其i : 則t ( ) ( ) ( ) 2
0 txfttxf == ;
Ph測ng trnh 速 cho tr谷 th nh : ( )002
=++ tCBtAt
L m t測ng t湛 v鱈i bt ph測ng trnh d孫ng: ( ) ( ) 0++ CxfBxAf
D孫ng 2:Gi其i ph測ng trnh:
( ) ( )( ) ( )( ) 0)(2 =++++ CDxgxfBxgxfA
(V鱈i ( ) Dxgxf =+ )( )
Ph測ng ph存p gi其i :
則t ( ) ( ) ( ) ( )xgxfDtttxgxf 20)( 2
+==+
Ph測ng trnh 速 cho tr谷 th nh : ( )002
=++ tCAtBt
L m t測ng t湛 v鱈i bt ph測ng trnh d孫ng:
( ) ( )( ) ( )( ) 0)(2 ++++ CDxgxfxgxfA
b袖i tp 存p d担ng:
B i 2.1: Gi其i c存c ph測ng trnh
)1(75553,1 22
+=+ xxxx
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 5 -- http://ebook.here.vn
)2(3012.2,2 22
=++ xx (則H DL H奪ng l孫c-2001)
Gi其i1: )1(75553,1 22
+=+ xxxx
則t )0(552
=+ ttxx
Ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
錚
錚
錚
錚
錚
賊
=
=
=

錚器3
錚
錚
錚
=+
=+
錚
錚
錚
=
=
=+
2
215
4
1
455
155
2
1
023 2
2
2
x
x
x
xx
xx
t
t
tt
Gi其i2: )2(30122,2 22
=++ xx
則t )0(122
>+= txt
Ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
=
=
=+
)(7
)(6
0422
Lt
tmt
tt
Vy 626122
賊==+ xx
--------------------------------------------------------------------------
B i 2.2: Gi其i c存c ph測ng trnh
)1(4
2
47
.1
2
x
x
xx
=
+
++
(則H 則束ng 速束-2000).
)2(4324.2 22
xxxx +=+ (則H M叩 -2001)
Gi其i2:
則t )0(4 2
モ= yxy
Ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
=+
=+

錚
錚
錚
+=+
=+
23
42)(
32
4 222
xyyx
xyyx
xyyx
yx
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 6 -- http://ebook.here.vn
Gi其i h 速竪i x淡ng n y ta 速樽c nghim:
錚
錚
錚
錚
錚
錚
錚
錚
+
=
=
=
錚
錚
錚
==
==
3
142
2
0
02
20
x
x
x
yx
yx
Gi其i1:則iu kin: 0x 則t )0( = ttx
Ph測ng trnh 速 cho tr谷 th nh:
04874 234
=++ tttt
Gi其i ph測ng trnh bc 4 :
Xt t=0 kh束ng l nghim
Xt t  0 ,chia hai v cho t2
v 速t )22(
2
+= u
t
tu
Ta 速樽c ph測ng trnh 錚
錚
錚
=
=
錚
錚
錚
=
=
錚
錚
錚
=
=
=+
4
1
2
1
3
)(1
0342
x
x
t
t
u
Lu
uu
B i 2.3: Gi其i c存c bt ph測ng trnh sau
123342.1 22
>++ xxxx (則HDL Ph測ng 則束ng -2000)
2)2(4)4(.2 22
<++ xxxxx (則H QG HCM -1999)
Gi其i1:
則iu kin: 13 もも x
則t: )0(23 2
モ= txxt
Bt ph測ng trnh 速 cho tr谷 th nh:
2
5
0
0
2
5
1
0
0532 2
<も
錚器3
錚
錚
錚

<<

錚
錚
錚

>++
t
t
t
t
tt
Thay v o c存ch 速t: 13
0
4
13
2
13
2
もも
錚器3
錚
錚
錚
++
もも
x
xx
x
Gi其i2:
2)2(4)4(.2 22
<++ xxxxx
則iu kin: 40 も x
則t: 042
+= xxt
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 7 -- http://ebook.here.vn
Thay v o BPT 則 cho v gi其i ra ta 速樽c 1>t
Thay v o c存ch 速t ta 速樽c: 3232 +<< x
B i 2.4: Gi其i c存c bt ph測ng trnh sau
7
2
1
2
2
3
3.1 +<+
x
x
x
x (則H Th存i Nguy捉n -2000)
3)7)(2(72.2 も++++ xxxx
Gi其i1: Bin 速脱i bt ph測ng trnh 速 cho tr谷 th nh:
( )
09
2
1
3
2
1
2
9
2
1
12)
2
1
(3
2
2
2
>錚
錚
錚
錚
錚
錚
+錚
錚
錚
錚
錚
錚
+

錚
錚
錚
錚
錚
錚
錚
錚
++<+
x
x
x
x
x
x
x
x
則t: 2
2
1
モ+= t
x
xt
BPT 速 cho tr谷 th nh:
錚
錚
錚
錚
錚
錚
+>
<<
>+
>
錚器3
錚
錚
錚
>

7
2
3
4
7
2
3
40
3
2
1
3
0932
2
2
x
x
x
x
t
tt
t
Gi其i 2:
則iu kin: 72 もも x
則t )0(72 モ++= txxt
Vy
2
9
)7)(2(
2

=+
t
xx
Bt ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
=
=

錚器3
錚
錚
錚
も++
もも

ももも+
7
2
9)7)(2(29
72
3001522
x
x
xx
x
ttt
B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 8 -- http://ebook.here.vn
B i 1:
2 2
2 2
2 2
2
1. 3 5 5 5 7;
2. 2 12 30;
3. 13 7;
4. ( 5)(2 ) 3 3 ;
x x x x
x x
x x x x
x x x x
 + =  +
+ =
   + =
+  = +
2
6. ( 4)( 1) 3 5 2 6;x x x x+ +  + + =
2 2
11. 2( 2 ) 2 3 9;x x x x +   =
2 2
12. ( 3) 3 22 3 7;x x x x +  =  +
( )( ) 2
15. 1 2 1 2 2 ;x x x x+  = + 
( )2 2
16. 2 2 2 3 9 0;x x x x +    =
2 2
17. 3 15 2 5 1 2;x x x x+ + + + =
B i 2:
2 2
5. 3 3 3 6 3;x x x x + +  + =
2 2
7. 5 2 2 5 9 1;x x x x+ + + +  =
9. 1 4 ( 1)(4 ) 5;x x x x+ +  + +  =
2 2
10. 4 2 3 4 ;x x x x+  = + 
2 2
13. 2 5 2 2 5 6 1;x x x x+ +  +  =
2 2
14. 3 2 2 6 2 2;x x x x+ +  + + = 
2 2 2
18. 4 1 2 2 9;x x x x x x+ + + + + = + +
2 2 2
8. 4 8 4 4 2 8 12;x x x x x x+ + + + + = + +
2 2
19. 1 2 1 2;x x x x  + +  =
2 2
20. 17 17 9;x x x x+  +  =
22
21.1 1 ;
3
x x x x+  = + 
24 4
22. 16 6;
2
x x
x x
+ + 
= +  
2
23. 3 2 1 4 9 2 3 5 2;x x x x x + = =  +  +
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 9 -- http://ebook.here.vn
2
24. 2 3 1 3 2 2 5 3 16;x x x x x+ + + = + + + 
25. 2 2 5 2 3 2 5 7 2;x x x x +  + + +  =
( ) ( )
3 3
5 5
26. 7 3 8 7 3 7;x x

   =
2
27. 2 3 2 ;
2 3
x
x x
x
+ + =
+
4 2 2
28. 1 1 2;x x x x  + +  =
2 2
29. 5 14 9 20 5 1;x x x x x+ +    = +
( )3 2
30.10 8 3 6 ;x x x+ =  
3 2
31. 1 3 1;x x x = + 
2
32. 1 ( 1) 0;x x x x x x    +  =
則t n ph担 速 tr谷 th nh ph測ng trnh c達 2 n:
* L vic s旦 d担ng 1 n ph担 chuyn 速 chuyn PT ban 速u th nh 1 PT v鱈i 1 n ph担
nhng c存c h s竪 vn cn ch淡a x
* PP n y th棚ng 速樽c SD 速竪i v鱈i nh歎ng PT khi l湛a ch辰n 1 n ph担 cho1 BT th c存c BT
cn l孫i kh束ng BD 速樽c trit 速 qua n ph担 速達 hoc nu BD 速樽c th c束ng th淡c BD
qu存 ph淡c tap.
* Khi 速達 th棚ng ta 速樽c 1 PT bc 2 theo n ph担 (hoc vn theo n x) c達 bit s竪  l
1 s竪 chnh ph測ng.
B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau:
B i 1:
2 2
1. 1 2 2 ;x x x x = 
2 2
2. 1 2 2;x x x = +
2 2
3. (4 1) 1 2 2 1;x x x x + = + +
2 2
4. 4 4 (2 ) 2 4;x x x x x+  = +  +
2 2
5. 3 1 (3 ) 1;x x x x+ + = + +
2 2
6. (4 1) 4 1 8 2 1;x x x x + = + +
2
7. 4 1 1 3 2 1 1 ;x x x x+  = +  +
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 10 -- http://ebook.here.vn
2 2
2 2
2
8. 2(1 ) 2 1 2 1;
9. 1 2 4 1 2 1;
10. 12 1 36;
1 1 1
11. 2 1 3 0;
x x x x x
x x x x
x x x
x
x x
x x x
 +  =  
+  =   +
+ + + =

+     =
3.Ph測ng ph存p 則t hai n ph担
D孫ng 1: Gi其i ph測ng trnh:
( ) ( )( ) ( ) 0)( =+++ CxgxfBxgxfA nnn
(V鱈i ( ) Dxgxf =+ )( )
Ph測ng ph存p gi其i : 則t:
( )
( )
Dvu
vxg
uxf nn
n
n
=+
錚器3
錚
錚
錚
=
=
Ph測ng trnh 速 cho tr谷 th nh:
( )
錚
錚
錚
=+
=+++
Dvu
CBuvvuA
nn
0
D孫ng 2: Gi其i ph測ng trnh:
( ) ( )( ) ( ) 0)( =++ CxgxfBxgxfA nnn
(V鱈i ( ) ( ) Dxgxf = )
Ph測ng ph存p gi其i : 則t:
( )
( )
Dvu
vxg
uxf nn
n
n
=
錚器3
錚
錚
錚
=
=
Ph測ng trnh 速 cho tr谷 th nh:
( )
錚
錚
錚
=
=++
Dvu
CBuvvuA
nn
0
b袖i tp 存p d担ng:
B i 3.1: Gi其i ph測ng trnh:
)x6)(2x(x62x +=++ (則H Ngo孫i Ng歎-2001)
Gi其i :
則t )0v,u(
vx6
u2x

錚器3
錚
錚
錚
=
=+
Ph測ng trnh 速 cho tr谷 th nh:
2vu
08uv2)uv(
vuuv
vuuv
8vu
2
22
==
錚
錚
錚
=
+=

錚
錚
錚
+=
=+
Vy:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 11 -- http://ebook.here.vn
2x2x62x ===+
B i 3.2:Gi其i ph測ng trnh:
13x22x 33
=++ (An Ninh-01)
Gi其i :
則t:
錚器3
錚
錚
錚
=+
=+
v3x
u22x
3
3
Ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
=
=
錚
錚
錚
==
==

錚
錚
錚
=
=
30x
5x
2u;3v
3u;2v
6uv
1vu
B i 3.3: Gi其i ph測ng trnh
541xx56 44
=++
則t:
)0uv(
v41x
ux56
4
4

錚器3
錚
錚
錚
=+
=
Ph測ng trnh 速 cho tr谷 th nh:
錚
錚
錚
=
=
錚
錚
錚
==
==

錚
錚
錚
=+
=+
40x
25x
2v;3u
3v;2u
97vu
5vu
44
B i tp l m th捉m: Gi其i c存c pt:
20 20
1. 6;
x x
x x
+ 
 =
42. 6 2 2(1 (6 )( 2);x x x x +  =   
3
3
3
2 2
33
3. 2 1 1;
4. 9 2 1;
5. 9 1 7 1 4;
6. 3 10 5;
7. 9 ( 3) 6;
x x
x x
x x
x x
x x
 =  
 =  
 + + + + =
+ +  =
 =  +
3
3
4 4
2 2
8. 24 12 6;
9. 7 1;
10. 5 1 2;
11. 3 3 3 6 3;
12. 1 8 ( 1)(8 ) 3;
x x
x x
x x
x x x x
x x x x
+ +  =
+  =
 =  =
 + +  + =
+ +  + +  =
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 12 -- http://ebook.here.vn
3 3
3 3
2 3 3 2
2 23 3 3
(34 ) 1 ( 1) 34
13. 30;
34 1
14. 1 2 (1 ) 1;
15. 1 1 (1 ) 1 2 1 ;
16. 2 2 4;
x x x x
x x
x x x x
x x x x
x x x x
 +  + 
=
  +
+    = 
錚 錚+    + = + 
錚 錚
+ + +   =
2 3 3 244 4 4
17. (1 ) (1 ) 1 (1 );x x x x x x x x+  +  =  + + 
3 3
3 3
7 5
18. 6 ;
7 5
x x
x
x x
  
= 
 + 
2 2
3 3
sin cos
2 23 3 3
2 2
2 24 4
19. 7 2 3;
20. 81 81 30;
21. sin cos 4;
22. sin 2 sin sin 2 sin 3;
23. 10 8sin 8 s 1 1;
x x
tgx tgx
x x
x x x x
x co x
+ +  =
+ =
+ =
+  +  =
+   =
4 4
1 1
24. cos2 cos2 2;
2 2
x x + + =
3 3
3 3
3 3
4 4
3 3
25. 5 7 5 12 1;
26. 24 5 1;
27. 47 2 35 2 4;
28. 47 10 5;
29. 12 14 2;
x x
x x
x x
x x
x x
+   =
+  + =
 + + =
 + + =
 +  =
3 3
4 4
30. 1 7 2;
31. 97 15 4;
x x
x x
+ +  =
 +  =
--------------------------------------------------------------------------
4.Ph測ng ph存p Nh息n li捉n h樽p
D孫ng : Gi其i ph測ng trnh:
( ) ( ) ( )xhCxgBxfA .=
V鱈i ( ) ( ) ( )xhDxgBxfA .22
=
Ph測ng ph存p gi其i :
Nh息n hai v v鱈i biu th淡c: ( ) ( )xgBxfA +
Ta 速樽c ph測ng trnh ( ) ( ) ( ) ( )( )xgBxfAxhCxhD += ..
Nh達m nh息n t旦 chung v gi其i hai ph測ng trnh:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 13 -- http://ebook.here.vn
( )
( ) ( )( )錚
錚
錚
錚
=+
=
DxgBxfAC
xh 0
b袖i tp 存p d担ng:
B i 4.1: Gi其i c存c ph測ng trnh sau:
)1(
5
3
2314.1
+
=+
x
xx
(則H Bu Chnh-2001)
)2(62)22(3.2 ++=+ xxx (則H Qu息n S湛 -2001)
Gi其i1: )1(
5
3
2314.1
+
=+
x
xx
則iu kin:
3
2
x Nh息n hai v v鱈i biu th淡c li捉n h樽p:
2314 ++ xx , Ph測ng trnh 速 cho tr谷 th nh:
( )
2
)(342
2
0684344
7
26
3
2
3
2
72623142
3
2
52314
3
2
2314
5
3
3
2
=錚
錚
錚
=
=

錚
錚
錚
錚
錚
=+
も

モр=+
モ=++
モр++
+
=+
x
Lx
x
xx
x
xxxx
xxx
xxx
x
x
Gi其i2:
)2(62)22(3.2 ++=+ xxx
則iu kin: 2x ; Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
62623 =+ xxx
Nh息n hai v v鱈i biu th淡c li捉n h樽p 623 ++ xx
L m t測ng t湛 nh phn 1) ta 速樽c tp nghim:
錚
錚
錚
錚
錚
錚 
=
2
5311
;3T
B i 4.2: Gi其i c存c bt ph測ng trnh sau
xxx モ+ 11 (則H Ngo孫i th測ng HCM-2001).
Gi其i1:
則iu kin: 11 もも x
Nh息n hai v v鱈i biu th淡c li捉n h樽p xx ++ 11 th bt ph測ng
trnh 速 cho t測ng 速測ng v鱈i:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 14 -- http://ebook.here.vn
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
++>
<
錚
錚
錚
++<
もも

錚
錚
錚
モ+
もも

錚
錚
錚
錚
錚

++
もも
xx
x
xx
x
xxx
x
x
xx
x
x
112
10
112
01
0)112(
11
11
2
11
10
10
0
01
もも
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚

<
錚
錚
錚
=
もも
 x
x
x
x
x
B i l m th捉m: (Nh息n li捉n h樽p)
2 2 2 2
1. 1 4 9 0;
3
2. 4 1 3 2 ;
5
3. 3(2 2) 2 6;
4. 3 7 3 2 3 5 1 3 4;
5. 21 21 21;
6. 21 21 ;
2 2
7. 2 2;
2 2 2 2
8. 2 1 2 2
x x x x
x
x x
x x x
x x x x x x x
x x
x x x
x x
x x
x x x
 +  + + + =
+
+   =
+  = + +
 +   =     +
+ +  =
+   =
+ 
+ =
+ +  +
  + = 
--------------------------------------------------------------------------
5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh
D孫ng : Gi其i ph測ng trnh:
( ) ( ) ( ) ( ) ( )xfxhxfBxgxfA =+
Ph測ng ph存p gi其i :
Xt ba tr棚ng h樽p :
Tr棚ng h樽p 1: ( ) ( )tmxf 0=
Tr棚ng h樽p 2: ( ) 0>xf Khi 速達 ph其i c達
( )
( )錚
錚
錚


0
0
xh
xg
Ph測ng trnh 速 cho tr谷 th nh ( ) ( ) ( )xfxhBxgA =+ (Ph測ng trnh
c測 b其n)
Tr棚ng h樽p 3: ( ) 0<xf Khi 速達 ph其i c達
( )
( )錚
錚
錚


0
0
xh
xg
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 15 -- http://ebook.here.vn
Ph測ng trnh 速 cho tr谷 th nh ( ) ( ) ( )xfxhBxgA =+
(Ph測ng trnh c測 b其n)
b袖i tp 存p d担ng:
B i 5.1: Gi其i ph測ng trnh sau
)1(221682.1 22
+=+++ xxxx
(則H B存ch khoa H N辿i -2001).
Gi其i1: 2 2
1. 2x 8x 6 x 1 2x 2 (1)+ + +  = ++ + +  = ++ + +  = ++ + +  = +
則iu kin :
錚
錚
錚
=


錚
錚
錚
錚
錚
+
モ
++
1
1
022
01
0682
2
2
x
x
x
x
xx
Nhn thy x=-1 l m辿t nghim c単a ph測ng trnh 速 cho
V鱈i 1x : Ph測ng trnh t測ng 速測ng v鱈i:
1
16422
1
121)3(2
1
)1(2)1)(1()3)(1(2
1
2
=
錚器3
錚
錚
錚
=+


錚器3
錚
錚
錚
+=++


錚器3
錚
錚
錚
+=++++


x
xxx
x
xxx
x
xxxxx
x
Vy ph測ng trnh 速 cho c達 hai nghim l x=1 v x=-1
B i 5.2: Gi其i c存c bt ph測ng trnh sau
113234.1 22
++ xxxxx (則H K to存n H N辿i -2001)
4523423.2 222
++++ xxxxxx (則H Y HCM -2001)
Gi其i1: 113234.1 22
++ xxxxx
則iu kin:
錚
錚
錚
錚
錚
錚
錚


=

錚
錚
錚
モ
モ
2
1
3
1
0)12)(1(
0)3)(1(
x
x
x
xx
xx
Nhn thy x=1 l m辿t nghim c単a bt ph測ng trnh
V鱈i 3x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c
錚
錚
錚
モ

1123
3
xxx
x
H n y v束 nghim v 13 < xx
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 16 -- http://ebook.here.vn
V鱈i
2
1
x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c
2
1
3)1)(3(2
2
1
1213
2
1
も
錚
錚
錚
錚
錚
モ


錚
錚
錚
錚
錚
モ

x
xx
x
xxx
x
Kt lun: Tp nghim {} 錚
錚
錚
錚
錚
錚

2
1
;1
Gi其i2: 4523423.2 222
++++ xxxxxx
則iu kin: 錚
錚
錚


4
1
x
x
Nhn thy x=1 l m辿t nghim c単a bt ph測ng trnh
V鱈i 4x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c bpt
4232 モ+ xxx
BPT tho其 m n v鱈i 4x v: 432 >> xxx
V鱈i 1x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c bpt
xxx モ+ 4232
BPT v束 nghim v xxx << 432
Kt lun: Tp nghim {} [ )+ ;41
B i tp l m th捉m:
B i 3: (PP ph息n chia MX則)
2
2
2
2 2
1. 1 1 1;
2. ( 3) (2 1);
3. ( 1)(2 7) 3( 1)( 6) ( 1)(7 1);
4. ( 1) ( 2) 2
5. 2 5 2 2) 3 6;
x x x
x x x x x
x x x x x x
x x x x x
x x x x x
  + = +
+  = 
 + +   =  +
 + + =
+ +  +  = +
2
2 2
2
2 2
6. 1 1;
7. 2 8 6 1 2 2;
8. 4 1 4 1 1
9.( 3) 10 12
x x
x x x x
x x
x x x x
 = +
+ + +  = +
 +  =
+  =  
6.Ph測ng ph存p Khai c即n
D孫ng : Gi其i ph測ng trnh:
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 17 -- http://ebook.here.vn
( )( ) ( )( ) ( )xgBAxfAxf .
22
=++
Ph測ng ph存p gi其i :
Khai c即n v ly 速u gi存 tr tuyt 速竪i ta 速樽c ph測ng trnh
( ) ( ) ( )xgBAxgAxf .=++
Ph存 du gi存 tr tuyt 速竪i b損ng c存ch ph息n chia min x存c 速nh ta 速樽c m辿t tuyn
hai h
( )
( ) ( )
( )
( )錚
錚
錚
錚
錚
錚
錚
錚
錚器3
錚
錚
錚
=

錚器3
錚
錚
錚
=

xgBA
Axf
xgBxf
Axf
.2
.2
Gi其i hai h n y ta s tm 速樽c nghim c単a ph測ng trnh
速 cho.
b袖i tp 存p d担ng:
B i 6.1: Gi其i ph測ng trnh sau
294444.1 2
+=++ xxxxxx
2
5
2122122
+
=++++++
x
xxxx
Gi其i 1:
294444.1 2
+=++ xxxxxx
2492424 2
+=++ xxxx
Nu 8x pt tr谷 th nh:
( )( )
( )
42
4
2
54
1
45442
42094224942 22

+

=
+=
++=+=
x
xx
xxx
xxxxxx
V 8x N捉n
( ) 3
42
4
2
54


+

x
xx
vy ph測ng trnh n y v束 nghim
Nu 84 < x pt tr谷 th nh:
542494 2
==+= xxxx
Vy pt 速 cho c達 nghim l x=4 v x=5.
Gi其i 2:
2
5
2122122
+
=++++++
x
xxxx
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 18 -- http://ebook.here.vn
2
5
1111
+
=++++
x
xx
Gi其i t測ng t湛 ta 速樽c nghim l x=-1 v x=3.
B i 6.2: Gi其i ph測ng trnh sau
21212 =+ xxxx
Gi其i:
Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
21111 =+ xx
( ) 2
2
1111
21
21111
2
モ
錚
錚
錚
錚
錚
錚
錚
=
錚
錚
錚
+
<
錚
錚
錚
=+

 x
xx
x
xx
x
Tp nghim:[ )+;2
7.Ph測ng ph存p 則孫o h袖m
D孫ng : B i to存n tm m 速 ph測ng trnh f(x)=m c達 nghim,
B i to存n ch淡ng minh ph測ng trnh f(x)=A c達 nghim duy nht,
B i to存n bin lun s竪 nghim c単a ph測ng trnh f(x)=m theo tham s竪 m.
Ph測ng ph存p gi其i :
* Tm tp x存c 速nh D c単a h m s竪 y=f(x)
* Tnh 速孫o h m f
(x) ,lp b其ng bin thi捉n .
* D湛a v o b其ng bin thi捉n 速 bin lun s竪 nghim c単a ph測ng trnh .
b袖i tp 存p d担ng:
B i 7.1:Tm m 速 ph測ng trnh sau c達 nghim
)45(12 xxmxxx +=++
Gi其i:
Nh息n hai v v鱈i biu th淡c li捉n h樽p: xx  45 ta 速樽c:
mxxxxx =++ )45)(12(
Xt )(xfVT = TX則 [ ]4;0=D
12)( ++= xxxxg ; 0
122
1
2
3
)( >
+
+=
x
x
xg
)(xg 速奪ng bin v lu束n d測ng tr捉n D.
xxxh = 45)( ; 0
452
45
)( >


=
xx
xx
xh
( )xh 速奪ng bin v lu束n d測ng tr捉n D.
Suy ra h m s竪 )()()( xhxgxf = c嘆ng s l h m s竪 速奪ng bin tr捉n D.
T探 速達 ( ) 44512)4()0( ももも VTfVTf
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 19 -- http://ebook.here.vn
Vy 速 ph測ng trnh 速 cho c達 nghim th:
( ) 44512 もも m
8.Ph測ng ph存p 速存nh gi存 hai v
Ph測ng ph存p:
S旦 d担ng bt 速村ng th淡c 速 ch淡ng minh VPVTVPVT も v tm 速iu kin 速 du
b損ng x其y ra
b袖i tp 存p d担ng:
B i 8.1: Gi其i c存c ph測ng trnh sau:
2152.1 2
=++ xxx
11414.2 2
=+ xx (則HQG H N辿i-2001)
Gi其i1: )1(2152.1 2
=++ xxx
則iu kin: 1
01
0522
モ
錚
錚
錚
モ
+
x
x
xx
Ta c達: ( ) xxxx +=+ 44152
22
VPxxxVT =モ++= 21522
Du b損ng x其y ra khi x=1.
Vy pt 速 cho c達 nghim duy nht x=1
Gi其i 2: 11414.2 2
=+ xx
則iu kin:
2
1
2
1
4
1
モ
錚
錚
錚
錚器4
錚
錚


x
x
x
Vy VPxxVT =モ+= 11414 2
Du b損ng x其y ra khi
2
1
014
114
2
=
錚
錚
錚
=
=
x
x
x
Vy pt 速 cho c達 nghim: 2
1=x
B i 8.2: Gi其i c存c ph測ng trnh sau:
xxxxxxx 32 +++=++
Gi其i:
則iu kin: 0x
Nhn thy x=0 l m辿t nghim c単a ph測ng trnh
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 20 -- http://ebook.here.vn
V鱈i x>0
xxxxxxx
xxxx
xxx
32
32
+++<++
錚器
錚
錚
錚
+<+
+<
Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x>0
Kt lun:nghim x=0
B i 8.3: Gi其i c存c ph測ng trnh sau:
0321 333
=+++++ xxx
Gi其i:
Nhn thy x=-2 l m辿t nghim
V鱈i x>-2 th x+1>-1
0
13
02
11
3
3
3
>
錚
錚
錚
錚器4
錚
錚
>+
>+
>+
 VT
x
x
x
Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x>-2
T測ng t湛 v鱈i x<-2
0
13
02
11
3
3
3
<
錚
錚
錚
錚器4
錚
錚
<+
<+
<+
 VT
x
x
x
Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x<-2
Kt lun : nghim x=0
B i tp l m th捉m : C即n bc ba.
3 3 3
3 3 3
3 3 3
3 3
3 3
1. 1 2 2 3;
2. 5 6 2 11;
3. 1 3 1 1;
4. 1 1 2
5. 2 1 2 1 2;
x x x
x x x
x x x
x x
x x x x
 +  = 
+ + + = +
+ + + = 
+ +  =
+  +   =
B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau:
2
3 2 2
2
2
1. 2 5 1 2;
2. 2 7 11 25 12 6 1;
1 1
3. 2 2 4 ;
4. 2 1 3 4 1 1;
x x x
x x x x x
x x
x x
x x x x
 + +  =
 +  = + 
錚 錚
 +  =  +錚 錚
錚 錚
  + +   =
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 21 -- http://ebook.here.vn
( )
2 2
3 2 2
5. 1 1 2;
6. 1 2 2 1 2 2 1;
7. 2 2 1 2 1 3;
8. 2 5 3 3 2 6 1;
x x x x
x x x x
x x x x x
x x x x x
  + +  =
 +      =
+     = +
+ +  = + 
2
6
9. 2 1 19 2
10 24
x x
x x
 +  =
 + 
2 2 3 3 4 43 3 4 4
10. 1 1 1 1 1 1 6;x x x x x x+ +  + + +  + + +  =
4 4 4
11. 1 1 2 8;x x x x+  + +  = +
4 24
2 4 4 34
2 44 4
12. 2 3 4;
13. 2 1;
14. 2 2 4;
5
15. 2 2 1 2 2 1 ;
2
x x x
x x x x
x x x x
x
x x x x
 =  +
 =  +
+ +  +  =
+
+ + + + +  + =
16. 3 4 1 15 8 1 6;
17. 6 9 6 9 6;
18. 5 4 1 2 2 1 1;
19. 2 2 2 1 2 2 3 4 2 1 3 2 8 6 2 1 4;
x x x x
x x x x
x x x x
x x x x x x
+ +  + +   =
+  +   =
+  + + +  + =
   +   + +   =
9.Ph測ng ph存p Tam th淡c bc hai
D孫ng : B i to存n bin lun s竪 nghim c単a ph測ng trnh f(x)=m theo tham s竪 m.
Trong 速達 ta 速t 速樽c: ( ) ( )0= ttxu ;
B i to存n khi 速達 tr谷 th nh :Bin lun theo m s竪 nghim c単a ph測ng trnh bc
hai
02
=++ cbtat
B其y b i to存n so s存nh nghim c単a tam th淡c bc hai v鱈i m辿t s竪, hai s竪:
21
21
21
,3
,2
,1
xx
xx
xx
<<
<<
<<
留
留
留
硫留
硫留
硫留
硫留
硫留
<<<
錚
錚
錚
<<<
<<<
<<<
<<<
21
21
21
21
21
,7
,6
,5
,4
xx
xx
xx
xx
xx
Ba b i to存n c測 b其n c単a tam th淡c bc hai:
1, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c R
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 22 -- http://ebook.here.vn
2, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c kho其ng (留;+);
3, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c kho其ng (留;硫);
b袖i tp 存p d担ng:
--------------------------------------------------------------------------
B i 9.1:Tm m 速 ph測ng trnh sau c達 nghim
( )( ) 01562
=++ xxmxx (C則 SP HCM-2001).
--------------------------------------------------------------------------
Gi其i: 則iu kin: 51 も x
則t ( )( ) ( ) 2043415
22
ももも== txttxx
B i to存n 速 cho tr谷 th nh:
Tm m 速 ph測ng trnh t2
-t+5-m=0
c達 nghim [ ]2;0t ,ngha l
錚
錚
錚
錚
錚
<<
もも
もも
20
20
20
21
21
21
tt
tt
tt
H 速iu kin tr捉n t測ng 速測ng v鱈i:
( ) ( )
( )
( )
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚器4
錚
錚
錚
<<
>
>
モ

2
2
0
02
00
0
02.0
s
f
f
ff
( )( )
7
4
19
2
2
1
0
7
5
4
19
075
もも
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
<<
<
<

も
 m
m
m
m
mm
--------------------------------------------------------------------------
B i 9.2:Tm m 速 ph測ng trnh sau c達 nghim
mxxxx ++=+ 99 2
(C則 Y HCM-1997).
--------------------------------------------------------------------------
Gi其i: 則iu kin: 90 も x
則t : ( ) ( )
4
81
2
9
4
1
09
2
2
わ7
錚
錚
錚
錚
錚
== xtttxx
2
9
0 もも t
B i to存n 速 cho tr谷 th nh:
Tm m 速 ph測ng trnh t2
-2t+m-9=0
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 23 -- http://ebook.here.vn
c達 nghim 錚削
錚
錚錚
錚

2
9
;0t ,ngha l
錚
錚
錚
錚
錚
錚
錚
錚
錚
<<
もも
もも
2
9
0
2
9
0
2
9
0
21
21
21
tt
tt
tt
H 速iu kin tr捉n t測ng 速測ng
v鱈i:
( )
( )
( )
10
4
9
109
9
4
9
0
4
9
09
010
0
4
9
9
2
2
0
0
2
9
00
0
0
2
9
.0
'
もも
錚
錚
錚
錚
<<
もも

錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
>+
>
+
<錚
錚
錚
錚
錚
錚
+

錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
<<
>錚
錚
錚
錚
錚
錚
>
モ 
わ7
錚
錚
錚
錚
錚
m
m
m
m
m
m
mm
s
f
f
ff
10.H ph測ng trnh
H 速竪i x淡ng lo孫i 1:
L h ph測ng trnh m khi thay 速脱i vai tr c単a x v y th m巽i ph測ng trnh c単a h
kh束ng thay 速脱i.
C存ch gi其i: + 則t ( )PS
Pxy
Syx
42

錚
錚
錚
=
=+
+ Gi其i h v鱈i hai n S,P
+ Th旦 速k v ly x,y l hai nghim pt X2
-SX+P=0
b袖i tp 存p d担ng:
B i 10.1:
Gi其i h:
錚
錚
錚
錚
錚
=+
+=+
78
1
7
xyyxyx
xyx
y
y
x
(則H H ng H其i 1999).
Gi其i:H 速 cho t測ng 速測ng v鱈i: ( )錚
錚
錚
錚
錚
=+
=+
>
78
7
0,
xyyx
xyyx
yx
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 24 -- http://ebook.here.vn
則t
錚
錚
錚
>
>
錚器3
錚
錚
錚
=
+=
0
0
;
v
u
xyv
yxu
H 速 cho tr谷 th nh
錚
錚
錚
=
=

錚
錚
錚
=
=
6
13
78
7
v
u
uv
vu
Gi其i ra ta 速樽c 2 nghim ( ) ( )4;9;9;4
H 速竪i x淡ng lo孫i 2:
- L h ph測ng trnh m khi thay 速脱i vai tr c単a x v y th hai ph測ng trnh c単a h
速脱i ch巽 cho nhau.
C存ch gi其i: -Tr探 v v鱈i v c単a hai ph測ng trnh 速 速樽c m辿t ph測ng trnh c達 d孫ng
tch.
- H 速 cho s t測ng 速測ng v鱈i tuyn hai h ph測ng trnh.
- Gi其i hai h n y 速 tm nghim x v y.
b袖i tp 存p d担ng:
B i 10.2: Cho h:
錚器3
錚
錚
錚
=++
=++
mxy
myx
21
21
1,Gi其i h khi m=9;
2,Tm m 速 h c達 nghim (則H SP HCM 2001).
Gi其i:
則iu kin: 0;2;1 モモ myx
Bnh ph測ng hai v ta 速樽c h:
( )( )
( )( )錚器3
錚
錚
錚
=+++
=+++
mxyyx
myxyx
211
211
Tr探 v v鱈i v c単a hai ph測ng trnh tr捉n ta 速樽c h:
( )( ) ( )( )
( )( ) ( )( )錚器3
錚
錚
錚
+=+
=

錚器3
錚
錚
錚
=+++
+=+
xmxx
yx
mxyyx
xyyx
21212211
2121
1, V鱈i m=9 ta c達 h:
( )( )
( )( ) ( )
3
521
5
521 2
==
錚
錚
錚
錚
錚
=+
=


錚器3
錚
錚
錚
=+
=
yx
xxx
yx
x
xxx
yx
2,Tm m 速 h c達 nghim :
H ( )( )
錚
錚
錚
錚
錚
錚
錚
錚
錚
++
=
+
=


錚器3
錚
錚
錚
+=+
=
m
mm
x
m
yx
m
xmxx
yx
4
82
2
1
2
0
21212
2
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 25 -- http://ebook.here.vn
則iu kin mmmmm
m
x 22928
2
1
2 22
+++も
+
も
( ) 3
3
03
09
096 2
2
2
モ
錚
錚
錚

モ

錚器3
錚
錚
錚
モ
+
 m
m
m
m
mm
Kt lun: 3m .
11.Ph測ng ph存p 速c bit
1.Ph測ng trnh ch淡a c即n bc hai v袖 lu端 th探a bc hai
B i to存n t脱ng qu存t:
Gi其i ph測ng trnh: ( ) ( )Iedxvuxrbax +++=+
2
V鱈i a  0, u  0 , r  0 ;
Ph測ng ph存p gi其i:
則iu kin d ph測ng trnh c達 ngha: 0+ bax
則t n ph担 : ( )1)( 2
baxvuybaxvuy +=++=+
V鱈i 速iu kin 0+ vuy
L坦c 速達 (I) tr谷 th nh : evdxuyvuyr +=+ 2
)(
Gi其 s旦 c存c 速iu kin sau 速樽c tho其 m n: u=ar +d v v=br+e
L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h
( )
( ) ( )錚器3
錚
錚
錚
++=+
+=+
brxuaruyvuxr
brarxvuyr
2
2
Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , 速樽c m辿t tuyn hai h
ph測ng trnh trong 速達 c達 m辿t nghim x=y
b袖i tp 存p d担ng:
--------------------------------------------------------------------------
B i 11.1:
Gi其i ph測ng trnh: ( )1203232152 2
+=+ xxx
(T孫p ch To存n H辰c Tu脱i Tr  S竪 303)
--------------------------------------------------------------------------
L棚i gi其i: 則iu kin 0152 +x
Bin 速脱i ph測ng trnh (1) th nh: ( ) 28242152
2
+=+ xx
則t n ph担 : ( )024152)24(15224 2
++=++=+ yxyxy .
Ph測ng trnh (1) tr谷 th nh : 152)24( 2
+=+ yx
Vy ta c達 h:
錚器3
錚
錚
錚
+=+
+=+
152)24(
152)24(
2
2
xy
yx
H n y l h 速竪i x淡ng lo孫i hai
Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh ,
Ta 速樽c 2 nghim l
16
2219
2
1
21

== xx
2.Ph測ng trnh ch淡a c即n bc ba v袖 lu端 th探a bc ba
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 26 -- http://ebook.here.vn
B i to存n t脱ng qu存t:
Gi其i ph測ng trnh: ( ) ( )IIedxvuxrbax +++=+
33
V鱈i a  0, u  0 ,
r  0 ;
Ph測ng ph存p gi其i:
則t n ph担 : ( )1)( 33
baxvuybaxvuy +=++=+
L坦c 速達 (II) tr谷 th nh : evdxuyvuxr +=+ 3
)(
Gi其 s旦 c存c 速iu kin sau 速樽c tho其 m n: u=ar +d v v=br+e
L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h
( )
( ) ( )錚器3
錚
錚
錚
++=+
+=+
brxuaruyvuxr
brarxvuyr
3
3
Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , 速樽c m辿t tuyn hai
h ph測ng trnh trong 速達 c達 m辿t nghim x=y.
b袖i tp 存p d担ng:
B i 11.2:
Gi其i ph測ng trnh: ( )2255336853 233
+= xxxx
(T孫p ch To存n H辰c Tu脱i Tr  S竪 303)
--------------------------------------------------------------------------
L棚i gi其i: ( ) ( ) ( )2232532
33
+= xxxPT
則t n ph担 : ( ) 53325332
33
== xyxy
L坦c 速達 (2) tr谷 th nh ( ) 5232
3
+= xyx
L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h
( )
( )錚器3
錚
錚
錚
=
+=
5332
5232
3
3
xy
xyx
Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh ,
Ta 速樽c 3 nghim:
4
35
;
4
35
;2 321

=
+
== xxx
B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau:
3 3
1. 1 2 2 1;x x+ = 
( )3 33 3
2. 35 35 30;x x x x +  =
3 3
2
2
2 2
3. 3 3 2 2;
4. 1 1;
5. 5 5;
6. 5 (5 ) ;
7. 3 3 ;
x x
x x
x x
x x
x x
 + =
+ + =
+ + =
=  
+ + =
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 27 -- http://ebook.here.vn
2 2
8. ( ) ;x a b a bx=  
3.S旦 d担ng tnh cht vc t測:
baba

++
Du b損ng x其y ra khi hai vc t測 a

v b

c誰ng h鱈ng , t測ng 速測ng v鱈i:
( )0>= kbka

;
D孫ng :Gi其i ph測ng trnh
( ) ( ) ( ) ( )222222
BAxhBxgAxf ++=+++
V鱈i
( ) ( ) ( )
錚
錚
錚
=+
=+
CBA
xhxgxf
Dt :
( )( )
( )( )
( ) ( )( ) ( )( )BAxhBAxgxfba
Bxgb
Axfa
+=++=+
錚
錚
錚
=
=
;;
;
; 


;
Ph測ng trnh 速 cho tr谷 th nh baba

+=+ Du 速村ng th淡c x其y ra khi v ch khi
hai vc t測 a

v b

c誰ng h鱈ng , t測ng 速測ng v鱈i: ( )0>= kbka

;
b袖i tp 存p d担ng:
--------------------------------------------------------------------------
B i 11.3: Gi其i ph測ng trnh:
2003267108168 22
=++++ xxxx
(Tuyn tp 速 thi Olimpic 30-4 -2003 )
--------------------------------------------------------------------------
Gi其i:
則t
( )
( )
( )231;9
211;5
220;4
=+
錚器3
錚
錚
錚
+=
=
ba
xb
xa 


Vy ta c達:
2003
;26710;8168 22
=+
++=+=
ba
xxbxxa


Ph測ng trnh 速 cho tr谷 th nh baba

+=+
Du 速村ng th淡c x其y ra khi v ch khi hai vc t測 a

v b

c誰ng h鱈ng , t測ng
速測ng v鱈i: ( )0>= kbka

; Gi其i ra 速樽c
31
56
=x
----------------------------------------------------
a
 b

ba

+
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 28 -- http://ebook.here.vn
3.S旦 d担ng php 速t l樽ng gi存c:
D孫ng 1: B i to存n c達 ch淡a 2
1 x .
Ph測ng ph存p gi其i : 則iu kin 1x .D湛a v o 速iu kin n y ta 速t x=sint
v鱈i 錚
錚
錚
錚
錚
錚 

2
;
2
t ; hoc x=cost v鱈i [ ] ;0t ; v gi其i ph測ng trnh l樽ng gi存c.
D孫ng 2: B i to存n c達 ch淡a 12
x .
Ph測ng ph存p gi其i : 則iu kin 1x .D湛a v o 速iu kin n y ta 速t t
x
sin
1
=
v鱈i 錚
錚
錚
錚
錚
錚 

2
;
2
t ; hoc t
x
cos
1
= v鱈i [ ] ;0t ; v gi其i ph測ng trnh l樽ng
gi存c.
b袖i tp 存p d担ng:
--------------------------------------------------------------------------
B i 11.4: Gi其i ph測ng trnh: :
xxx 341 22
= ;
(Tuyn tp 速 thi Olimpic 30-4 -2003 )
--------------------------------------------------------------------------
Gi其i: 則iu kin 1x .D湛a v o 速iu kin n y ta 速t x=cost v鱈i [ ] ;0t ; v gi其i
ph測ng trnh l樽ng gi存c:
( )
錚
錚
錚
錚
錚
錚

+

=

+

=
錚
錚
錚
錚
錚
錚


=
>==
24
28
2
cos3cos
0sinsin3cossincos3cos4 23
kt
kt
tt
tttttt
Do [ ] ;0t n捉n ta ch辰n:
錚
錚
錚
錚
錚
錚
錚
錚
錚
錚
+
=
+
=

=

錚
錚
錚
錚
錚
錚
錚
錚
錚

=

=

=
4
22
4
22
2
2
8
5
8
4
3
x
x
x
t
t
t
--------------------------------------------------------------------------
B i 11.5: Gi其i ph測ng trnh: :
12
35
1 2
>

+
x
x
x ;
(Tuyn tp 速 thi Olimpic 30-4 -2003 )
L捉 Th Ph測ng Hoa
Tr棚ng THPT Tam D測ng II -- 29 -- http://ebook.here.vn
--------------------------------------------------------------------------
Gi其i : 則iu kin 1>x .V v tr存i lu束n d測ng n捉n y捉u cu x > 0 , do 速達 x>1
D湛a v o 速iu kin n y ta 速t :
t
x
cos
1
= v鱈i 錚
錚
錚
錚
錚
錚 

2
;0t ; v gi其i bt ph測ng trnh l樽ng gi存c
( )
( )
( )
( )
錚
錚
錚
錚
錚
錚
<<
>

錚
錚
錚
錚
錚
錚
<<
<<

錚
錚
錚
錚
錚
錚
<<
<<

<<<<<<
=<
>+
>+>+
4
5
1
3
5
1cos
5
4
5
3
cos0
1cos
25
16
25
9
cos0
625
144
cos1cos0
25
12
cossin0
25
12
0
cossin0144144.21225
cossin1225cossin21144
cossin35cossin12
12
35
sin
1
cos
1
2
2
22
2
22
x
x
t
t
t
t
tttty
ttyyy
tttt
tttt
tt
---------------------------------------------------------------------------
Ad

Recommended

Tich phan phamkimchung-www.mathvn.com
Tich phan phamkimchung-www.mathvn.com
Huynh ICT
Phuong trinh nghiem nguyen
Phuong trinh nghiem nguyen
lovemathforever
Www.mathvn.com bt-mu logarit-mathvn.com
Www.mathvn.com bt-mu logarit-mathvn.com
hao5433
Baigiang tichphan phamkimchung
Baigiang tichphan phamkimchung
trongphuckhtn
Luong giac
Luong giac
Huynh ICT
Luonggiac chuong2
Luonggiac chuong2
Huynh ICT
Luonggiac chuong3
Luonggiac chuong3
Huynh ICT
Copy of hpt mu va logarit www.mathvn.com
Copy of hpt mu va logarit www.mathvn.com
DennyTran89
Bai tap va bai giai chuoi so chuoi ha mpdf
Bai tap va bai giai chuoi so chuoi ha mpdf
Informatics and Maths
Luong giac chuong 7
Luong giac chuong 7
Huynh ICT
Luonggiac chuong4
Luonggiac chuong4
Huynh ICT
Luonggiac chuong5
Luonggiac chuong5
Huynh ICT
Toan pt.de058.2010
Toan pt.de058.2010
B畉O H鱈
Giai bai-toan-lien-quan-kshs
Giai bai-toan-lien-quan-kshs
Huynh ICT
Chuyen de pt bpt v hpt on thi dh
Chuyen de pt bpt v hpt on thi dh
Vui L棚n B畉n Nh辿
6 problem eigen
6 problem eigen
abeerahman
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
https://www.facebook.com/garmentspace
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
soufiane merabti
morphima.image.sml
morphima.image.sml
Hans Verleur
5thSunEMCBrochure-English3.0 (1)
5thSunEMCBrochure-English3.0 (1)
Steven Pearce, MBA, MPM
Guide to Reason
Guide to Reason
dmclewil
Kich ban su pham tro choi Thu tai cung Mendeleev
Kich ban su pham tro choi Thu tai cung Mendeleev
Cuon Theo Chieu Gio
Doccle: Cooperate For Simplicity
Doccle: Cooperate For Simplicity
Doccle
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
pandkjewelry
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Grupo HULAT
Doccle: The Payment Experiment
Doccle: The Payment Experiment
Doccle
ICT Media Platform versie sept 2016
ICT Media Platform versie sept 2016
Aschwin Geerts
Un grand int辿r棚t pour le projet IoT de Doccle et Ixor
Doccle
Cr辿er une nouvelle cat辿gorie
Doccle
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
pandkjewelry

More Related Content

What's hot (10)

Bai tap va bai giai chuoi so chuoi ha mpdf
Bai tap va bai giai chuoi so chuoi ha mpdf
Informatics and Maths
Luong giac chuong 7
Luong giac chuong 7
Huynh ICT
Luonggiac chuong4
Luonggiac chuong4
Huynh ICT
Luonggiac chuong5
Luonggiac chuong5
Huynh ICT
Toan pt.de058.2010
Toan pt.de058.2010
B畉O H鱈
Giai bai-toan-lien-quan-kshs
Giai bai-toan-lien-quan-kshs
Huynh ICT
Chuyen de pt bpt v hpt on thi dh
Chuyen de pt bpt v hpt on thi dh
Vui L棚n B畉n Nh辿
6 problem eigen
6 problem eigen
abeerahman
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
https://www.facebook.com/garmentspace
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
soufiane merabti
Bai tap va bai giai chuoi so chuoi ha mpdf
Bai tap va bai giai chuoi so chuoi ha mpdf
Informatics and Maths
Luong giac chuong 7
Luong giac chuong 7
Huynh ICT
Luonggiac chuong4
Luonggiac chuong4
Huynh ICT
Luonggiac chuong5
Luonggiac chuong5
Huynh ICT
Toan pt.de058.2010
Toan pt.de058.2010
B畉O H鱈
Giai bai-toan-lien-quan-kshs
Giai bai-toan-lien-quan-kshs
Huynh ICT
6 problem eigen
6 problem eigen
abeerahman
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
Tuy畛n t畉p t鱈ch ph但n luy畛n thi 畉i h畛c 2014 [叩p 叩n chi ti畉t]
https://www.facebook.com/garmentspace
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
忰 悴惺 惠悋惘 悋惠悋惡 悋悽悋惶悸 惡悋悋悋惠 . Exercises and solution of limits ...
soufiane merabti

Viewers also liked (15)

morphima.image.sml
morphima.image.sml
Hans Verleur
5thSunEMCBrochure-English3.0 (1)
5thSunEMCBrochure-English3.0 (1)
Steven Pearce, MBA, MPM
Guide to Reason
Guide to Reason
dmclewil
Kich ban su pham tro choi Thu tai cung Mendeleev
Kich ban su pham tro choi Thu tai cung Mendeleev
Cuon Theo Chieu Gio
Doccle: Cooperate For Simplicity
Doccle: Cooperate For Simplicity
Doccle
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
pandkjewelry
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Grupo HULAT
Doccle: The Payment Experiment
Doccle: The Payment Experiment
Doccle
ICT Media Platform versie sept 2016
ICT Media Platform versie sept 2016
Aschwin Geerts
Un grand int辿r棚t pour le projet IoT de Doccle et Ixor
Doccle
Cr辿er une nouvelle cat辿gorie
Doccle
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
pandkjewelry
The DDI (Drug-Drug Interaction) Corpus
The DDI (Drug-Drug Interaction) Corpus
Grupo HULAT
sinterklaas
sinterklaas
Frieda Loyens
Presentation "Spanish Resources in Trendminer Project"
Presentation "Spanish Resources in Trendminer Project"
Grupo HULAT
morphima.image.sml
morphima.image.sml
Hans Verleur
Guide to Reason
Guide to Reason
dmclewil
Kich ban su pham tro choi Thu tai cung Mendeleev
Kich ban su pham tro choi Thu tai cung Mendeleev
Cuon Theo Chieu Gio
Doccle: Cooperate For Simplicity
Doccle: Cooperate For Simplicity
Doccle
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
Wholesale Silver Jewelry New York : Silver Alloys are in High Demand
pandkjewelry
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Score-based Approach for Anaphora Resolution in Drug-Drug Interaction Documents
Grupo HULAT
Doccle: The Payment Experiment
Doccle: The Payment Experiment
Doccle
ICT Media Platform versie sept 2016
ICT Media Platform versie sept 2016
Aschwin Geerts
Un grand int辿r棚t pour le projet IoT de Doccle et Ixor
Doccle
Cr辿er une nouvelle cat辿gorie
Doccle
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
Vintage fashion of yesteryears is gaining prominence with marcasite jewelry
pandkjewelry
The DDI (Drug-Drug Interaction) Corpus
The DDI (Drug-Drug Interaction) Corpus
Grupo HULAT
Presentation "Spanish Resources in Trendminer Project"
Presentation "Spanish Resources in Trendminer Project"
Grupo HULAT
Ad

Luyenthidh pt-bpt-voti

  • 1. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 1 -- http://ebook.here.vn 1.ph測ng trnh1.ph測ng trnh1.ph測ng trnh1.ph測ng trnh bt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其nbt ph測ng trnh c測 b其n a.ph測ng trnh c測 b其n: D孫ng ph測ng trnh: 錚 錚 錚 = )()( 0)( )()( 2 xgxf xg xgxf (nu g(x) c達 TX則 l R) b.Bt ph測ng trnh c測 b其n: D孫ng 1: 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 < > )()( 0)( 0)( 0)( )()( 2 xgxf xg xg xf xgxf D孫ng 2: ( ) ( ) ( ) ( )錚 錚 錚 錚 錚 < > < xgxf xf xg xgxf 2 0 0 )()( Ch坦 箪: Khi h ch淡a t探 hai biu th淡c c即n bc hai tr谷 l捉n , 速 c達 th 速a v d孫ng c測 b其n , ta l m nh sau: + 則t m辿t h 速iu kin cho tt c其 c存c c即n 速u c達 ngha . + Chuyn v hoc 速t 速iu kin 速 hai v 速u kh束ng 息m . + Bnh ph測ng hai v . + Tip t担c cho 速n khi ht c即n . b袖i tp 存p d担ng B i 1.1: Gi其i c存c ph測ng trnh sau: )1(3253.1 =+ xx )2(632.2 xx =+ Gi其i1: Ph測ng trnh 速 cho t測ng 速測ng v鱈i: 錚器3 錚 錚 錚 錚器3 錚 錚 錚 = = =+ 2 7 2 014154 2 3 2 x x xx x Gi其i2: Ph測ng trnh 速 cho t測ng 速測ng v鱈i: 3 113 6 03314 6 2 = 錚 錚 錚 == 錚 錚 錚 =+ x xx x xx x B i 1.2 Gi其i ph測ng trnh sau )1(1266.1 2 =+ xxx (則H X息y D湛ng -2001). Gi其i: Ph測ng trnh 速 cho t測ng 速測ng v鱈i:
  • 2. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 2 -- http://ebook.here.vn 1 1 2 1 )12(66 2 1 22 = 錚器3 錚 錚 錚 = 錚器3 錚 錚 錚 =+ x x x xxx x B i 1.3 Gi其i ph測ng trnh 321 =++ xx Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h: 2 )4()2)(1(_ 41 4)2)(1( 1 2 = 錚 錚 錚 錚 錚 錚 = も =+ x xxx x xxx x B i 1.4: Gi其i ph測ng trnh 231 = xxx Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h: 3 326 3 326 3 326 43 0883 43 6524 3 231 3 22 + = 錚 錚 錚 錚 錚 = + = も 錚 錚 錚 =+ も 錚 錚 錚 += 錚 錚 錚 += x xx x xx x xxx x xxx x -- B i 1.5: Gi其i ph測ng trnh xxxx +=+ 1 3 2 1 2 (則HQG H N辿i 2000) Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h: 錚器3 錚 錚 錚 錚器3 錚 錚 錚 = も +=++ も 22222 3 2 3 2 3 2 10 21 3 4 3 2 3 2 1 10 xxxx x xxxxxx x 錚 錚 錚 = = 錚 錚 錚 == も 錚 錚 錚 = も 1 0 10 10 0)1( 10 22 x x xx x xxxx x B i 1.6: Gi其i ph測ng trnh ( ) 3428316643 =+ xx Gi其i:Ph測ng trnh 速 cho t測ng 速測ng v鱈i h: ( ) 2 2 2 2 4 3 3428316643 4 3 = 錚 錚 錚 錚器4 錚 錚 = 錚器3 錚 錚 錚 =+ x x x xx x
  • 3. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 3 -- http://ebook.here.vn B i 1.7: Gi其i bt ph測ng trnh: 27593137 も xxx (則H DL Ph測ng 則束ng -2001) 則iu kin: 5 27 x Bt ph測ng trnh 速 cho t測ng 速測ng v鱈i: 錚 錚 錚 錚 錚 +も 93275137 5 27 xxx x ( )( ) ( )( ) 23 59 65762229 044345859 23 5 27 23275932 5 27 275932368137 5 27 2 も + 錚 錚 錚 錚 錚 + も 錚 錚 錚 錚 錚 モ 錚 錚 錚 錚 錚 +も x xx x xxx x xxxx x B i tp l m th捉m: B i 1: (PP B則 T則) 2 2 2 2 2 2 1. 3 2 2 1; 2. 3 9 1 2 3. 4 6 4; 4. 2 4 2 5. 3 9 1 | 2 |; 6. 2 3 0; 7. 1 1; x x x x x x x x x x x x x x x x x x x + = + = + = + + + = + = + = + + = B i 2: (PP B則 T則) 1. 3 6 3; 2. 3 2 1 3; 3. 3 2 1; 4. 9 5 2 4; 5. 3 4 2 1 3; 6. 5 1 3 2 1 0; x x x x x x x x x x x x x x + + = + = + = + = + + + = + = 7. 3 4 4 2 ;x x x+ + + = 8. 5 5 10 5 15 10;x x x + = 9. 4 1 1 2 ;x x x+ =
  • 4. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 4 -- http://ebook.here.vn 2 10. 3 2 1 2; 11. 1 5 1 3 2 x x x x x x + + + = = 12. 1 9 2 12x x x+ = 2 2 13. 5 8 4 5x x x x+ + + = 2 2 14. 3 5 8 3 5 1 1x x x x+ + + + = 2 2 15. 9 7 2 5 1 3 2 1x x x x x+ = 2 2 2 2 16. 3 6 16 2 2 2 4 3 1 1 4 2 17. 3 9 9 x x x x x x x x x x + + + + = + + + = + + 2 18. 1 2 5x x x = 19. 11 11 4x x x x+ + + + = 20. 1 1 8x x x+ = + -------------------------------------------------------------------------- 2.ph測ng ph存p 則t m辿t n ph担 D孫ng 1: Gi其i ph測ng trnh: ( ) ( ) 0=++ CxfBxAf Ph測ng ph存p gi其i : 則t ( ) ( ) ( ) 2 0 txfttxf == ; Ph測ng trnh 速 cho tr谷 th nh : ( )002 =++ tCBtAt L m t測ng t湛 v鱈i bt ph測ng trnh d孫ng: ( ) ( ) 0++ CxfBxAf D孫ng 2:Gi其i ph測ng trnh: ( ) ( )( ) ( )( ) 0)(2 =++++ CDxgxfBxgxfA (V鱈i ( ) Dxgxf =+ )( ) Ph測ng ph存p gi其i : 則t ( ) ( ) ( ) ( )xgxfDtttxgxf 20)( 2 +==+ Ph測ng trnh 速 cho tr谷 th nh : ( )002 =++ tCAtBt L m t測ng t湛 v鱈i bt ph測ng trnh d孫ng: ( ) ( )( ) ( )( ) 0)(2 ++++ CDxgxfxgxfA b袖i tp 存p d担ng: B i 2.1: Gi其i c存c ph測ng trnh )1(75553,1 22 +=+ xxxx
  • 5. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 5 -- http://ebook.here.vn )2(3012.2,2 22 =++ xx (則H DL H奪ng l孫c-2001) Gi其i1: )1(75553,1 22 +=+ xxxx 則t )0(552 =+ ttxx Ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 錚 錚 錚 錚 錚 賊 = = = 錚器3 錚 錚 錚 =+ =+ 錚 錚 錚 = = =+ 2 215 4 1 455 155 2 1 023 2 2 2 x x x xx xx t t tt Gi其i2: )2(30122,2 22 =++ xx 則t )0(122 >+= txt Ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 = = =+ )(7 )(6 0422 Lt tmt tt Vy 626122 賊==+ xx -------------------------------------------------------------------------- B i 2.2: Gi其i c存c ph測ng trnh )1(4 2 47 .1 2 x x xx = + ++ (則H 則束ng 速束-2000). )2(4324.2 22 xxxx +=+ (則H M叩 -2001) Gi其i2: 則t )0(4 2 モ= yxy Ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 =+ =+ 錚 錚 錚 +=+ =+ 23 42)( 32 4 222 xyyx xyyx xyyx yx
  • 6. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 6 -- http://ebook.here.vn Gi其i h 速竪i x淡ng n y ta 速樽c nghim: 錚 錚 錚 錚 錚 錚 錚 錚 + = = = 錚 錚 錚 == == 3 142 2 0 02 20 x x x yx yx Gi其i1:則iu kin: 0x 則t )0( = ttx Ph測ng trnh 速 cho tr谷 th nh: 04874 234 =++ tttt Gi其i ph測ng trnh bc 4 : Xt t=0 kh束ng l nghim Xt t 0 ,chia hai v cho t2 v 速t )22( 2 += u t tu Ta 速樽c ph測ng trnh 錚 錚 錚 = = 錚 錚 錚 = = 錚 錚 錚 = = =+ 4 1 2 1 3 )(1 0342 x x t t u Lu uu B i 2.3: Gi其i c存c bt ph測ng trnh sau 123342.1 22 >++ xxxx (則HDL Ph測ng 則束ng -2000) 2)2(4)4(.2 22 <++ xxxxx (則H QG HCM -1999) Gi其i1: 則iu kin: 13 もも x 則t: )0(23 2 モ= txxt Bt ph測ng trnh 速 cho tr谷 th nh: 2 5 0 0 2 5 1 0 0532 2 <も 錚器3 錚 錚 錚 << 錚 錚 錚 >++ t t t t tt Thay v o c存ch 速t: 13 0 4 13 2 13 2 もも 錚器3 錚 錚 錚 ++ もも x xx x Gi其i2: 2)2(4)4(.2 22 <++ xxxxx 則iu kin: 40 も x 則t: 042 += xxt
  • 7. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 7 -- http://ebook.here.vn Thay v o BPT 則 cho v gi其i ra ta 速樽c 1>t Thay v o c存ch 速t ta 速樽c: 3232 +<< x B i 2.4: Gi其i c存c bt ph測ng trnh sau 7 2 1 2 2 3 3.1 +<+ x x x x (則H Th存i Nguy捉n -2000) 3)7)(2(72.2 も++++ xxxx Gi其i1: Bin 速脱i bt ph測ng trnh 速 cho tr谷 th nh: ( ) 09 2 1 3 2 1 2 9 2 1 12) 2 1 (3 2 2 2 >錚 錚 錚 錚 錚 錚 +錚 錚 錚 錚 錚 錚 + 錚 錚 錚 錚 錚 錚 錚 錚 ++<+ x x x x x x x x 則t: 2 2 1 モ+= t x xt BPT 速 cho tr谷 th nh: 錚 錚 錚 錚 錚 錚 +> << >+ > 錚器3 錚 錚 錚 > 7 2 3 4 7 2 3 40 3 2 1 3 0932 2 2 x x x x t tt t Gi其i 2: 則iu kin: 72 もも x 則t )0(72 モ++= txxt Vy 2 9 )7)(2( 2 =+ t xx Bt ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 = = 錚器3 錚 錚 錚 も++ もも ももも+ 7 2 9)7)(2(29 72 3001522 x x xx x ttt B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau:
  • 8. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 8 -- http://ebook.here.vn B i 1: 2 2 2 2 2 2 2 1. 3 5 5 5 7; 2. 2 12 30; 3. 13 7; 4. ( 5)(2 ) 3 3 ; x x x x x x x x x x x x x x + = + + = + = + = + 2 6. ( 4)( 1) 3 5 2 6;x x x x+ + + + = 2 2 11. 2( 2 ) 2 3 9;x x x x + = 2 2 12. ( 3) 3 22 3 7;x x x x + = + ( )( ) 2 15. 1 2 1 2 2 ;x x x x+ = + ( )2 2 16. 2 2 2 3 9 0;x x x x + = 2 2 17. 3 15 2 5 1 2;x x x x+ + + + = B i 2: 2 2 5. 3 3 3 6 3;x x x x + + + = 2 2 7. 5 2 2 5 9 1;x x x x+ + + + = 9. 1 4 ( 1)(4 ) 5;x x x x+ + + + = 2 2 10. 4 2 3 4 ;x x x x+ = + 2 2 13. 2 5 2 2 5 6 1;x x x x+ + + = 2 2 14. 3 2 2 6 2 2;x x x x+ + + + = 2 2 2 18. 4 1 2 2 9;x x x x x x+ + + + + = + + 2 2 2 8. 4 8 4 4 2 8 12;x x x x x x+ + + + + = + + 2 2 19. 1 2 1 2;x x x x + + = 2 2 20. 17 17 9;x x x x+ + = 22 21.1 1 ; 3 x x x x+ = + 24 4 22. 16 6; 2 x x x x + + = + 2 23. 3 2 1 4 9 2 3 5 2;x x x x x + = = + +
  • 9. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 9 -- http://ebook.here.vn 2 24. 2 3 1 3 2 2 5 3 16;x x x x x+ + + = + + + 25. 2 2 5 2 3 2 5 7 2;x x x x + + + + = ( ) ( ) 3 3 5 5 26. 7 3 8 7 3 7;x x = 2 27. 2 3 2 ; 2 3 x x x x + + = + 4 2 2 28. 1 1 2;x x x x + + = 2 2 29. 5 14 9 20 5 1;x x x x x+ + = + ( )3 2 30.10 8 3 6 ;x x x+ = 3 2 31. 1 3 1;x x x = + 2 32. 1 ( 1) 0;x x x x x x + = 則t n ph担 速 tr谷 th nh ph測ng trnh c達 2 n: * L vic s旦 d担ng 1 n ph担 chuyn 速 chuyn PT ban 速u th nh 1 PT v鱈i 1 n ph担 nhng c存c h s竪 vn cn ch淡a x * PP n y th棚ng 速樽c SD 速竪i v鱈i nh歎ng PT khi l湛a ch辰n 1 n ph担 cho1 BT th c存c BT cn l孫i kh束ng BD 速樽c trit 速 qua n ph担 速達 hoc nu BD 速樽c th c束ng th淡c BD qu存 ph淡c tap. * Khi 速達 th棚ng ta 速樽c 1 PT bc 2 theo n ph担 (hoc vn theo n x) c達 bit s竪 l 1 s竪 chnh ph測ng. B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau: B i 1: 2 2 1. 1 2 2 ;x x x x = 2 2 2. 1 2 2;x x x = + 2 2 3. (4 1) 1 2 2 1;x x x x + = + + 2 2 4. 4 4 (2 ) 2 4;x x x x x+ = + + 2 2 5. 3 1 (3 ) 1;x x x x+ + = + + 2 2 6. (4 1) 4 1 8 2 1;x x x x + = + + 2 7. 4 1 1 3 2 1 1 ;x x x x+ = + +
  • 10. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 10 -- http://ebook.here.vn 2 2 2 2 2 8. 2(1 ) 2 1 2 1; 9. 1 2 4 1 2 1; 10. 12 1 36; 1 1 1 11. 2 1 3 0; x x x x x x x x x x x x x x x x x x + = + = + + + + = + = 3.Ph測ng ph存p 則t hai n ph担 D孫ng 1: Gi其i ph測ng trnh: ( ) ( )( ) ( ) 0)( =+++ CxgxfBxgxfA nnn (V鱈i ( ) Dxgxf =+ )( ) Ph測ng ph存p gi其i : 則t: ( ) ( ) Dvu vxg uxf nn n n =+ 錚器3 錚 錚 錚 = = Ph測ng trnh 速 cho tr谷 th nh: ( ) 錚 錚 錚 =+ =+++ Dvu CBuvvuA nn 0 D孫ng 2: Gi其i ph測ng trnh: ( ) ( )( ) ( ) 0)( =++ CxgxfBxgxfA nnn (V鱈i ( ) ( ) Dxgxf = ) Ph測ng ph存p gi其i : 則t: ( ) ( ) Dvu vxg uxf nn n n = 錚器3 錚 錚 錚 = = Ph測ng trnh 速 cho tr谷 th nh: ( ) 錚 錚 錚 = =++ Dvu CBuvvuA nn 0 b袖i tp 存p d担ng: B i 3.1: Gi其i ph測ng trnh: )x6)(2x(x62x +=++ (則H Ngo孫i Ng歎-2001) Gi其i : 則t )0v,u( vx6 u2x 錚器3 錚 錚 錚 = =+ Ph測ng trnh 速 cho tr谷 th nh: 2vu 08uv2)uv( vuuv vuuv 8vu 2 22 == 錚 錚 錚 = += 錚 錚 錚 += =+ Vy:
  • 11. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 11 -- http://ebook.here.vn 2x2x62x ===+ B i 3.2:Gi其i ph測ng trnh: 13x22x 33 =++ (An Ninh-01) Gi其i : 則t: 錚器3 錚 錚 錚 =+ =+ v3x u22x 3 3 Ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 = = 錚 錚 錚 == == 錚 錚 錚 = = 30x 5x 2u;3v 3u;2v 6uv 1vu B i 3.3: Gi其i ph測ng trnh 541xx56 44 =++ 則t: )0uv( v41x ux56 4 4 錚器3 錚 錚 錚 =+ = Ph測ng trnh 速 cho tr谷 th nh: 錚 錚 錚 = = 錚 錚 錚 == == 錚 錚 錚 =+ =+ 40x 25x 2v;3u 3v;2u 97vu 5vu 44 B i tp l m th捉m: Gi其i c存c pt: 20 20 1. 6; x x x x + = 42. 6 2 2(1 (6 )( 2);x x x x + = 3 3 3 2 2 33 3. 2 1 1; 4. 9 2 1; 5. 9 1 7 1 4; 6. 3 10 5; 7. 9 ( 3) 6; x x x x x x x x x x = = + + + + = + + = = + 3 3 4 4 2 2 8. 24 12 6; 9. 7 1; 10. 5 1 2; 11. 3 3 3 6 3; 12. 1 8 ( 1)(8 ) 3; x x x x x x x x x x x x x x + + = + = = = + + + = + + + + =
  • 12. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 12 -- http://ebook.here.vn 3 3 3 3 2 3 3 2 2 23 3 3 (34 ) 1 ( 1) 34 13. 30; 34 1 14. 1 2 (1 ) 1; 15. 1 1 (1 ) 1 2 1 ; 16. 2 2 4; x x x x x x x x x x x x x x x x x x + + = + + = 錚 錚+ + = + 錚 錚 + + + = 2 3 3 244 4 4 17. (1 ) (1 ) 1 (1 );x x x x x x x x+ + = + + 3 3 3 3 7 5 18. 6 ; 7 5 x x x x x = + 2 2 3 3 sin cos 2 23 3 3 2 2 2 24 4 19. 7 2 3; 20. 81 81 30; 21. sin cos 4; 22. sin 2 sin sin 2 sin 3; 23. 10 8sin 8 s 1 1; x x tgx tgx x x x x x x x co x + + = + = + = + + = + = 4 4 1 1 24. cos2 cos2 2; 2 2 x x + + = 3 3 3 3 3 3 4 4 3 3 25. 5 7 5 12 1; 26. 24 5 1; 27. 47 2 35 2 4; 28. 47 10 5; 29. 12 14 2; x x x x x x x x x x + = + + = + + = + + = + = 3 3 4 4 30. 1 7 2; 31. 97 15 4; x x x x + + = + = -------------------------------------------------------------------------- 4.Ph測ng ph存p Nh息n li捉n h樽p D孫ng : Gi其i ph測ng trnh: ( ) ( ) ( )xhCxgBxfA .= V鱈i ( ) ( ) ( )xhDxgBxfA .22 = Ph測ng ph存p gi其i : Nh息n hai v v鱈i biu th淡c: ( ) ( )xgBxfA + Ta 速樽c ph測ng trnh ( ) ( ) ( ) ( )( )xgBxfAxhCxhD += .. Nh達m nh息n t旦 chung v gi其i hai ph測ng trnh:
  • 13. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 13 -- http://ebook.here.vn ( ) ( ) ( )( )錚 錚 錚 錚 =+ = DxgBxfAC xh 0 b袖i tp 存p d担ng: B i 4.1: Gi其i c存c ph測ng trnh sau: )1( 5 3 2314.1 + =+ x xx (則H Bu Chnh-2001) )2(62)22(3.2 ++=+ xxx (則H Qu息n S湛 -2001) Gi其i1: )1( 5 3 2314.1 + =+ x xx 則iu kin: 3 2 x Nh息n hai v v鱈i biu th淡c li捉n h樽p: 2314 ++ xx , Ph測ng trnh 速 cho tr谷 th nh: ( ) 2 )(342 2 0684344 7 26 3 2 3 2 72623142 3 2 52314 3 2 2314 5 3 3 2 =錚 錚 錚 = = 錚 錚 錚 錚 錚 =+ も モр=+ モ=++ モр++ + =+ x Lx x xx x xxxx xxx xxx x x Gi其i2: )2(62)22(3.2 ++=+ xxx 則iu kin: 2x ; Ph測ng trnh 速 cho t測ng 速測ng v鱈i: 62623 =+ xxx Nh息n hai v v鱈i biu th淡c li捉n h樽p 623 ++ xx L m t測ng t湛 nh phn 1) ta 速樽c tp nghim: 錚 錚 錚 錚 錚 錚 = 2 5311 ;3T B i 4.2: Gi其i c存c bt ph測ng trnh sau xxx モ+ 11 (則H Ngo孫i th測ng HCM-2001). Gi其i1: 則iu kin: 11 もも x Nh息n hai v v鱈i biu th淡c li捉n h樽p xx ++ 11 th bt ph測ng trnh 速 cho t測ng 速測ng v鱈i:
  • 14. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 14 -- http://ebook.here.vn 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 ++> < 錚 錚 錚 ++< もも 錚 錚 錚 モ+ もも 錚 錚 錚 錚 錚 ++ もも xx x xx x xxx x x xx x x 112 10 112 01 0)112( 11 11 2 11 10 10 0 01 もも 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 < 錚 錚 錚 = もも x x x x x B i l m th捉m: (Nh息n li捉n h樽p) 2 2 2 2 1. 1 4 9 0; 3 2. 4 1 3 2 ; 5 3. 3(2 2) 2 6; 4. 3 7 3 2 3 5 1 3 4; 5. 21 21 21; 6. 21 21 ; 2 2 7. 2 2; 2 2 2 2 8. 2 1 2 2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x + + + + = + + = + = + + + = + + + = + = + + = + + + + = -------------------------------------------------------------------------- 5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh5.Ph測ng ph存p Ph息n chia min x存c 速nh D孫ng : Gi其i ph測ng trnh: ( ) ( ) ( ) ( ) ( )xfxhxfBxgxfA =+ Ph測ng ph存p gi其i : Xt ba tr棚ng h樽p : Tr棚ng h樽p 1: ( ) ( )tmxf 0= Tr棚ng h樽p 2: ( ) 0>xf Khi 速達 ph其i c達 ( ) ( )錚 錚 錚 0 0 xh xg Ph測ng trnh 速 cho tr谷 th nh ( ) ( ) ( )xfxhBxgA =+ (Ph測ng trnh c測 b其n) Tr棚ng h樽p 3: ( ) 0<xf Khi 速達 ph其i c達 ( ) ( )錚 錚 錚 0 0 xh xg
  • 15. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 15 -- http://ebook.here.vn Ph測ng trnh 速 cho tr谷 th nh ( ) ( ) ( )xfxhBxgA =+ (Ph測ng trnh c測 b其n) b袖i tp 存p d担ng: B i 5.1: Gi其i ph測ng trnh sau )1(221682.1 22 +=+++ xxxx (則H B存ch khoa H N辿i -2001). Gi其i1: 2 2 1. 2x 8x 6 x 1 2x 2 (1)+ + + = ++ + + = ++ + + = ++ + + = + 則iu kin : 錚 錚 錚 = 錚 錚 錚 錚 錚 + モ ++ 1 1 022 01 0682 2 2 x x x x xx Nhn thy x=-1 l m辿t nghim c単a ph測ng trnh 速 cho V鱈i 1x : Ph測ng trnh t測ng 速測ng v鱈i: 1 16422 1 121)3(2 1 )1(2)1)(1()3)(1(2 1 2 = 錚器3 錚 錚 錚 =+ 錚器3 錚 錚 錚 +=++ 錚器3 錚 錚 錚 +=++++ x xxx x xxx x xxxxx x Vy ph測ng trnh 速 cho c達 hai nghim l x=1 v x=-1 B i 5.2: Gi其i c存c bt ph測ng trnh sau 113234.1 22 ++ xxxxx (則H K to存n H N辿i -2001) 4523423.2 222 ++++ xxxxxx (則H Y HCM -2001) Gi其i1: 113234.1 22 ++ xxxxx 則iu kin: 錚 錚 錚 錚 錚 錚 錚 = 錚 錚 錚 モ モ 2 1 3 1 0)12)(1( 0)3)(1( x x x xx xx Nhn thy x=1 l m辿t nghim c単a bt ph測ng trnh V鱈i 3x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c 錚 錚 錚 モ 1123 3 xxx x H n y v束 nghim v 13 < xx
  • 16. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 16 -- http://ebook.here.vn V鱈i 2 1 x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c 2 1 3)1)(3(2 2 1 1213 2 1 も 錚 錚 錚 錚 錚 モ 錚 錚 錚 錚 錚 モ x xx x xxx x Kt lun: Tp nghim {} 錚 錚 錚 錚 錚 錚 2 1 ;1 Gi其i2: 4523423.2 222 ++++ xxxxxx 則iu kin: 錚 錚 錚 4 1 x x Nhn thy x=1 l m辿t nghim c単a bt ph測ng trnh V鱈i 4x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c bpt 4232 モ+ xxx BPT tho其 m n v鱈i 4x v: 432 >> xxx V鱈i 1x Ta t存ch c即n c単a bt ph測ng trnh 速 cho v 速樽c bpt xxx モ+ 4232 BPT v束 nghim v xxx << 432 Kt lun: Tp nghim {} [ )+ ;41 B i tp l m th捉m: B i 3: (PP ph息n chia MX則) 2 2 2 2 2 1. 1 1 1; 2. ( 3) (2 1); 3. ( 1)(2 7) 3( 1)( 6) ( 1)(7 1); 4. ( 1) ( 2) 2 5. 2 5 2 2) 3 6; x x x x x x x x x x x x x x x x x x x x x x x x + = + + = + + = + + + = + + + = + 2 2 2 2 2 2 6. 1 1; 7. 2 8 6 1 2 2; 8. 4 1 4 1 1 9.( 3) 10 12 x x x x x x x x x x x x = + + + + = + + = + = 6.Ph測ng ph存p Khai c即n D孫ng : Gi其i ph測ng trnh:
  • 17. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 17 -- http://ebook.here.vn ( )( ) ( )( ) ( )xgBAxfAxf . 22 =++ Ph測ng ph存p gi其i : Khai c即n v ly 速u gi存 tr tuyt 速竪i ta 速樽c ph測ng trnh ( ) ( ) ( )xgBAxgAxf .=++ Ph存 du gi存 tr tuyt 速竪i b損ng c存ch ph息n chia min x存c 速nh ta 速樽c m辿t tuyn hai h ( ) ( ) ( ) ( ) ( )錚 錚 錚 錚 錚 錚 錚 錚 錚器3 錚 錚 錚 = 錚器3 錚 錚 錚 = xgBA Axf xgBxf Axf .2 .2 Gi其i hai h n y ta s tm 速樽c nghim c単a ph測ng trnh 速 cho. b袖i tp 存p d担ng: B i 6.1: Gi其i ph測ng trnh sau 294444.1 2 +=++ xxxxxx 2 5 2122122 + =++++++ x xxxx Gi其i 1: 294444.1 2 +=++ xxxxxx 2492424 2 +=++ xxxx Nu 8x pt tr谷 th nh: ( )( ) ( ) 42 4 2 54 1 45442 42094224942 22 + = += ++=+= x xx xxx xxxxxx V 8x N捉n ( ) 3 42 4 2 54 + x xx vy ph測ng trnh n y v束 nghim Nu 84 < x pt tr谷 th nh: 542494 2 ==+= xxxx Vy pt 速 cho c達 nghim l x=4 v x=5. Gi其i 2: 2 5 2122122 + =++++++ x xxxx
  • 18. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 18 -- http://ebook.here.vn 2 5 1111 + =++++ x xx Gi其i t測ng t湛 ta 速樽c nghim l x=-1 v x=3. B i 6.2: Gi其i ph測ng trnh sau 21212 =+ xxxx Gi其i: Ph測ng trnh 速 cho t測ng 速測ng v鱈i: 21111 =+ xx ( ) 2 2 1111 21 21111 2 モ 錚 錚 錚 錚 錚 錚 錚 = 錚 錚 錚 + < 錚 錚 錚 =+ x xx x xx x Tp nghim:[ )+;2 7.Ph測ng ph存p 則孫o h袖m D孫ng : B i to存n tm m 速 ph測ng trnh f(x)=m c達 nghim, B i to存n ch淡ng minh ph測ng trnh f(x)=A c達 nghim duy nht, B i to存n bin lun s竪 nghim c単a ph測ng trnh f(x)=m theo tham s竪 m. Ph測ng ph存p gi其i : * Tm tp x存c 速nh D c単a h m s竪 y=f(x) * Tnh 速孫o h m f (x) ,lp b其ng bin thi捉n . * D湛a v o b其ng bin thi捉n 速 bin lun s竪 nghim c単a ph測ng trnh . b袖i tp 存p d担ng: B i 7.1:Tm m 速 ph測ng trnh sau c達 nghim )45(12 xxmxxx +=++ Gi其i: Nh息n hai v v鱈i biu th淡c li捉n h樽p: xx 45 ta 速樽c: mxxxxx =++ )45)(12( Xt )(xfVT = TX則 [ ]4;0=D 12)( ++= xxxxg ; 0 122 1 2 3 )( > + += x x xg )(xg 速奪ng bin v lu束n d測ng tr捉n D. xxxh = 45)( ; 0 452 45 )( > = xx xx xh ( )xh 速奪ng bin v lu束n d測ng tr捉n D. Suy ra h m s竪 )()()( xhxgxf = c嘆ng s l h m s竪 速奪ng bin tr捉n D. T探 速達 ( ) 44512)4()0( ももも VTfVTf
  • 19. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 19 -- http://ebook.here.vn Vy 速 ph測ng trnh 速 cho c達 nghim th: ( ) 44512 もも m 8.Ph測ng ph存p 速存nh gi存 hai v Ph測ng ph存p: S旦 d担ng bt 速村ng th淡c 速 ch淡ng minh VPVTVPVT も v tm 速iu kin 速 du b損ng x其y ra b袖i tp 存p d担ng: B i 8.1: Gi其i c存c ph測ng trnh sau: 2152.1 2 =++ xxx 11414.2 2 =+ xx (則HQG H N辿i-2001) Gi其i1: )1(2152.1 2 =++ xxx 則iu kin: 1 01 0522 モ 錚 錚 錚 モ + x x xx Ta c達: ( ) xxxx +=+ 44152 22 VPxxxVT =モ++= 21522 Du b損ng x其y ra khi x=1. Vy pt 速 cho c達 nghim duy nht x=1 Gi其i 2: 11414.2 2 =+ xx 則iu kin: 2 1 2 1 4 1 モ 錚 錚 錚 錚器4 錚 錚 x x x Vy VPxxVT =モ+= 11414 2 Du b損ng x其y ra khi 2 1 014 114 2 = 錚 錚 錚 = = x x x Vy pt 速 cho c達 nghim: 2 1=x B i 8.2: Gi其i c存c ph測ng trnh sau: xxxxxxx 32 +++=++ Gi其i: 則iu kin: 0x Nhn thy x=0 l m辿t nghim c単a ph測ng trnh
  • 20. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 20 -- http://ebook.here.vn V鱈i x>0 xxxxxxx xxxx xxx 32 32 +++<++ 錚器 錚 錚 錚 +<+ +< Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x>0 Kt lun:nghim x=0 B i 8.3: Gi其i c存c ph測ng trnh sau: 0321 333 =+++++ xxx Gi其i: Nhn thy x=-2 l m辿t nghim V鱈i x>-2 th x+1>-1 0 13 02 11 3 3 3 > 錚 錚 錚 錚器4 錚 錚 >+ >+ >+ VT x x x Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x>-2 T測ng t湛 v鱈i x<-2 0 13 02 11 3 3 3 < 錚 錚 錚 錚器4 錚 錚 <+ <+ <+ VT x x x Du b損ng kh束ng x其y ra n捉n pt v束 nghim v鱈i x<-2 Kt lun : nghim x=0 B i tp l m th捉m : C即n bc ba. 3 3 3 3 3 3 3 3 3 3 3 3 3 1. 1 2 2 3; 2. 5 6 2 11; 3. 1 3 1 1; 4. 1 1 2 5. 2 1 2 1 2; x x x x x x x x x x x x x x x + = + + + = + + + + = + + = + + = B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau: 2 3 2 2 2 2 1. 2 5 1 2; 2. 2 7 11 25 12 6 1; 1 1 3. 2 2 4 ; 4. 2 1 3 4 1 1; x x x x x x x x x x x x x x x x + + = + = + 錚 錚 + = +錚 錚 錚 錚 + + =
  • 21. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 21 -- http://ebook.here.vn ( ) 2 2 3 2 2 5. 1 1 2; 6. 1 2 2 1 2 2 1; 7. 2 2 1 2 1 3; 8. 2 5 3 3 2 6 1; x x x x x x x x x x x x x x x x x x + + = + = + = + + + = + 2 6 9. 2 1 19 2 10 24 x x x x + = + 2 2 3 3 4 43 3 4 4 10. 1 1 1 1 1 1 6;x x x x x x+ + + + + + + + = 4 4 4 11. 1 1 2 8;x x x x+ + + = + 4 24 2 4 4 34 2 44 4 12. 2 3 4; 13. 2 1; 14. 2 2 4; 5 15. 2 2 1 2 2 1 ; 2 x x x x x x x x x x x x x x x x = + = + + + + = + + + + + + + = 16. 3 4 1 15 8 1 6; 17. 6 9 6 9 6; 18. 5 4 1 2 2 1 1; 19. 2 2 2 1 2 2 3 4 2 1 3 2 8 6 2 1 4; x x x x x x x x x x x x x x x x x x + + + + = + + = + + + + + = + + + = 9.Ph測ng ph存p Tam th淡c bc hai D孫ng : B i to存n bin lun s竪 nghim c単a ph測ng trnh f(x)=m theo tham s竪 m. Trong 速達 ta 速t 速樽c: ( ) ( )0= ttxu ; B i to存n khi 速達 tr谷 th nh :Bin lun theo m s竪 nghim c単a ph測ng trnh bc hai 02 =++ cbtat B其y b i to存n so s存nh nghim c単a tam th淡c bc hai v鱈i m辿t s竪, hai s竪: 21 21 21 ,3 ,2 ,1 xx xx xx << << << 留 留 留 硫留 硫留 硫留 硫留 硫留 <<< 錚 錚 錚 <<< <<< <<< <<< 21 21 21 21 21 ,7 ,6 ,5 ,4 xx xx xx xx xx Ba b i to存n c測 b其n c単a tam th淡c bc hai: 1, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c R
  • 22. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 22 -- http://ebook.here.vn 2, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c kho其ng (留;+); 3, Tm 速iu kin 速 f(x)>0 v鱈i m辰i x thu辿c kho其ng (留;硫); b袖i tp 存p d担ng: -------------------------------------------------------------------------- B i 9.1:Tm m 速 ph測ng trnh sau c達 nghim ( )( ) 01562 =++ xxmxx (C則 SP HCM-2001). -------------------------------------------------------------------------- Gi其i: 則iu kin: 51 も x 則t ( )( ) ( ) 2043415 22 ももも== txttxx B i to存n 速 cho tr谷 th nh: Tm m 速 ph測ng trnh t2 -t+5-m=0 c達 nghim [ ]2;0t ,ngha l 錚 錚 錚 錚 錚 << もも もも 20 20 20 21 21 21 tt tt tt H 速iu kin tr捉n t測ng 速測ng v鱈i: ( ) ( ) ( ) ( ) 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚器4 錚 錚 錚 << > > モ 2 2 0 02 00 0 02.0 s f f ff ( )( ) 7 4 19 2 2 1 0 7 5 4 19 075 もも 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 << < < も m m m m mm -------------------------------------------------------------------------- B i 9.2:Tm m 速 ph測ng trnh sau c達 nghim mxxxx ++=+ 99 2 (C則 Y HCM-1997). -------------------------------------------------------------------------- Gi其i: 則iu kin: 90 も x 則t : ( ) ( ) 4 81 2 9 4 1 09 2 2 わ7 錚 錚 錚 錚 錚 == xtttxx 2 9 0 もも t B i to存n 速 cho tr谷 th nh: Tm m 速 ph測ng trnh t2 -2t+m-9=0
  • 23. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 23 -- http://ebook.here.vn c達 nghim 錚削 錚 錚錚 錚 2 9 ;0t ,ngha l 錚 錚 錚 錚 錚 錚 錚 錚 錚 << もも もも 2 9 0 2 9 0 2 9 0 21 21 21 tt tt tt H 速iu kin tr捉n t測ng 速測ng v鱈i: ( ) ( ) ( ) 10 4 9 109 9 4 9 0 4 9 09 010 0 4 9 9 2 2 0 0 2 9 00 0 0 2 9 .0 ' もも 錚 錚 錚 錚 << もも 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 >+ > + <錚 錚 錚 錚 錚 錚 + 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 << >錚 錚 錚 錚 錚 錚 > モ わ7 錚 錚 錚 錚 錚 m m m m m m mm s f f ff 10.H ph測ng trnh H 速竪i x淡ng lo孫i 1: L h ph測ng trnh m khi thay 速脱i vai tr c単a x v y th m巽i ph測ng trnh c単a h kh束ng thay 速脱i. C存ch gi其i: + 則t ( )PS Pxy Syx 42 錚 錚 錚 = =+ + Gi其i h v鱈i hai n S,P + Th旦 速k v ly x,y l hai nghim pt X2 -SX+P=0 b袖i tp 存p d担ng: B i 10.1: Gi其i h: 錚 錚 錚 錚 錚 =+ +=+ 78 1 7 xyyxyx xyx y y x (則H H ng H其i 1999). Gi其i:H 速 cho t測ng 速測ng v鱈i: ( )錚 錚 錚 錚 錚 =+ =+ > 78 7 0, xyyx xyyx yx
  • 24. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 24 -- http://ebook.here.vn 則t 錚 錚 錚 > > 錚器3 錚 錚 錚 = += 0 0 ; v u xyv yxu H 速 cho tr谷 th nh 錚 錚 錚 = = 錚 錚 錚 = = 6 13 78 7 v u uv vu Gi其i ra ta 速樽c 2 nghim ( ) ( )4;9;9;4 H 速竪i x淡ng lo孫i 2: - L h ph測ng trnh m khi thay 速脱i vai tr c単a x v y th hai ph測ng trnh c単a h 速脱i ch巽 cho nhau. C存ch gi其i: -Tr探 v v鱈i v c単a hai ph測ng trnh 速 速樽c m辿t ph測ng trnh c達 d孫ng tch. - H 速 cho s t測ng 速測ng v鱈i tuyn hai h ph測ng trnh. - Gi其i hai h n y 速 tm nghim x v y. b袖i tp 存p d担ng: B i 10.2: Cho h: 錚器3 錚 錚 錚 =++ =++ mxy myx 21 21 1,Gi其i h khi m=9; 2,Tm m 速 h c達 nghim (則H SP HCM 2001). Gi其i: 則iu kin: 0;2;1 モモ myx Bnh ph測ng hai v ta 速樽c h: ( )( ) ( )( )錚器3 錚 錚 錚 =+++ =+++ mxyyx myxyx 211 211 Tr探 v v鱈i v c単a hai ph測ng trnh tr捉n ta 速樽c h: ( )( ) ( )( ) ( )( ) ( )( )錚器3 錚 錚 錚 +=+ = 錚器3 錚 錚 錚 =+++ +=+ xmxx yx mxyyx xyyx 21212211 2121 1, V鱈i m=9 ta c達 h: ( )( ) ( )( ) ( ) 3 521 5 521 2 == 錚 錚 錚 錚 錚 =+ = 錚器3 錚 錚 錚 =+ = yx xxx yx x xxx yx 2,Tm m 速 h c達 nghim : H ( )( ) 錚 錚 錚 錚 錚 錚 錚 錚 錚 ++ = + = 錚器3 錚 錚 錚 +=+ = m mm x m yx m xmxx yx 4 82 2 1 2 0 21212 2
  • 25. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 25 -- http://ebook.here.vn 則iu kin mmmmm m x 22928 2 1 2 22 +++も + も ( ) 3 3 03 09 096 2 2 2 モ 錚 錚 錚 モ 錚器3 錚 錚 錚 モ + m m m m mm Kt lun: 3m . 11.Ph測ng ph存p 速c bit 1.Ph測ng trnh ch淡a c即n bc hai v袖 lu端 th探a bc hai B i to存n t脱ng qu存t: Gi其i ph測ng trnh: ( ) ( )Iedxvuxrbax +++=+ 2 V鱈i a 0, u 0 , r 0 ; Ph測ng ph存p gi其i: 則iu kin d ph測ng trnh c達 ngha: 0+ bax 則t n ph担 : ( )1)( 2 baxvuybaxvuy +=++=+ V鱈i 速iu kin 0+ vuy L坦c 速達 (I) tr谷 th nh : evdxuyvuyr +=+ 2 )( Gi其 s旦 c存c 速iu kin sau 速樽c tho其 m n: u=ar +d v v=br+e L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h ( ) ( ) ( )錚器3 錚 錚 錚 ++=+ +=+ brxuaruyvuxr brarxvuyr 2 2 Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , 速樽c m辿t tuyn hai h ph測ng trnh trong 速達 c達 m辿t nghim x=y b袖i tp 存p d担ng: -------------------------------------------------------------------------- B i 11.1: Gi其i ph測ng trnh: ( )1203232152 2 +=+ xxx (T孫p ch To存n H辰c Tu脱i Tr S竪 303) -------------------------------------------------------------------------- L棚i gi其i: 則iu kin 0152 +x Bin 速脱i ph測ng trnh (1) th nh: ( ) 28242152 2 +=+ xx 則t n ph担 : ( )024152)24(15224 2 ++=++=+ yxyxy . Ph測ng trnh (1) tr谷 th nh : 152)24( 2 +=+ yx Vy ta c達 h: 錚器3 錚 錚 錚 +=+ +=+ 152)24( 152)24( 2 2 xy yx H n y l h 速竪i x淡ng lo孫i hai Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , Ta 速樽c 2 nghim l 16 2219 2 1 21 == xx 2.Ph測ng trnh ch淡a c即n bc ba v袖 lu端 th探a bc ba
  • 26. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 26 -- http://ebook.here.vn B i to存n t脱ng qu存t: Gi其i ph測ng trnh: ( ) ( )IIedxvuxrbax +++=+ 33 V鱈i a 0, u 0 , r 0 ; Ph測ng ph存p gi其i: 則t n ph担 : ( )1)( 33 baxvuybaxvuy +=++=+ L坦c 速達 (II) tr谷 th nh : evdxuyvuxr +=+ 3 )( Gi其 s旦 c存c 速iu kin sau 速樽c tho其 m n: u=ar +d v v=br+e L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h ( ) ( ) ( )錚器3 錚 錚 錚 ++=+ +=+ brxuaruyvuxr brarxvuyr 3 3 Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , 速樽c m辿t tuyn hai h ph測ng trnh trong 速達 c達 m辿t nghim x=y. b袖i tp 存p d担ng: B i 11.2: Gi其i ph測ng trnh: ( )2255336853 233 += xxxx (T孫p ch To存n H辰c Tu脱i Tr S竪 303) -------------------------------------------------------------------------- L棚i gi其i: ( ) ( ) ( )2232532 33 += xxxPT 則t n ph担 : ( ) 53325332 33 == xyxy L坦c 速達 (2) tr谷 th nh ( ) 5232 3 += xyx L坦c 速達 ph測ng trnh 速 cho tr谷 th nh h ( ) ( )錚器3 錚 錚 錚 = += 5332 5232 3 3 xy xyx Gi其i h tr捉n b損ng c存ch tr探 v v鱈i v c単a hai ph測ng trnh , Ta 速樽c 3 nghim: 4 35 ; 4 35 ;2 321 = + == xxx B i tp.B i tp.B i tp.B i tp. Gi其i c存c PT sau: 3 3 1. 1 2 2 1;x x+ = ( )3 33 3 2. 35 35 30;x x x x + = 3 3 2 2 2 2 3. 3 3 2 2; 4. 1 1; 5. 5 5; 6. 5 (5 ) ; 7. 3 3 ; x x x x x x x x x x + = + + = + + = = + + =
  • 27. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 27 -- http://ebook.here.vn 2 2 8. ( ) ;x a b a bx= 3.S旦 d担ng tnh cht vc t測: baba ++ Du b損ng x其y ra khi hai vc t測 a v b c誰ng h鱈ng , t測ng 速測ng v鱈i: ( )0>= kbka ; D孫ng :Gi其i ph測ng trnh ( ) ( ) ( ) ( )222222 BAxhBxgAxf ++=+++ V鱈i ( ) ( ) ( ) 錚 錚 錚 =+ =+ CBA xhxgxf Dt : ( )( ) ( )( ) ( ) ( )( ) ( )( )BAxhBAxgxfba Bxgb Axfa +=++=+ 錚 錚 錚 = = ;; ; ; ; Ph測ng trnh 速 cho tr谷 th nh baba +=+ Du 速村ng th淡c x其y ra khi v ch khi hai vc t測 a v b c誰ng h鱈ng , t測ng 速測ng v鱈i: ( )0>= kbka ; b袖i tp 存p d担ng: -------------------------------------------------------------------------- B i 11.3: Gi其i ph測ng trnh: 2003267108168 22 =++++ xxxx (Tuyn tp 速 thi Olimpic 30-4 -2003 ) -------------------------------------------------------------------------- Gi其i: 則t ( ) ( ) ( )231;9 211;5 220;4 =+ 錚器3 錚 錚 錚 += = ba xb xa Vy ta c達: 2003 ;26710;8168 22 =+ ++=+= ba xxbxxa Ph測ng trnh 速 cho tr谷 th nh baba +=+ Du 速村ng th淡c x其y ra khi v ch khi hai vc t測 a v b c誰ng h鱈ng , t測ng 速測ng v鱈i: ( )0>= kbka ; Gi其i ra 速樽c 31 56 =x ---------------------------------------------------- a b ba +
  • 28. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 28 -- http://ebook.here.vn 3.S旦 d担ng php 速t l樽ng gi存c: D孫ng 1: B i to存n c達 ch淡a 2 1 x . Ph測ng ph存p gi其i : 則iu kin 1x .D湛a v o 速iu kin n y ta 速t x=sint v鱈i 錚 錚 錚 錚 錚 錚 2 ; 2 t ; hoc x=cost v鱈i [ ] ;0t ; v gi其i ph測ng trnh l樽ng gi存c. D孫ng 2: B i to存n c達 ch淡a 12 x . Ph測ng ph存p gi其i : 則iu kin 1x .D湛a v o 速iu kin n y ta 速t t x sin 1 = v鱈i 錚 錚 錚 錚 錚 錚 2 ; 2 t ; hoc t x cos 1 = v鱈i [ ] ;0t ; v gi其i ph測ng trnh l樽ng gi存c. b袖i tp 存p d担ng: -------------------------------------------------------------------------- B i 11.4: Gi其i ph測ng trnh: : xxx 341 22 = ; (Tuyn tp 速 thi Olimpic 30-4 -2003 ) -------------------------------------------------------------------------- Gi其i: 則iu kin 1x .D湛a v o 速iu kin n y ta 速t x=cost v鱈i [ ] ;0t ; v gi其i ph測ng trnh l樽ng gi存c: ( ) 錚 錚 錚 錚 錚 錚 + = + = 錚 錚 錚 錚 錚 錚 = >== 24 28 2 cos3cos 0sinsin3cossincos3cos4 23 kt kt tt tttttt Do [ ] ;0t n捉n ta ch辰n: 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 + = + = = 錚 錚 錚 錚 錚 錚 錚 錚 錚 = = = 4 22 4 22 2 2 8 5 8 4 3 x x x t t t -------------------------------------------------------------------------- B i 11.5: Gi其i ph測ng trnh: : 12 35 1 2 > + x x x ; (Tuyn tp 速 thi Olimpic 30-4 -2003 )
  • 29. L捉 Th Ph測ng Hoa Tr棚ng THPT Tam D測ng II -- 29 -- http://ebook.here.vn -------------------------------------------------------------------------- Gi其i : 則iu kin 1>x .V v tr存i lu束n d測ng n捉n y捉u cu x > 0 , do 速達 x>1 D湛a v o 速iu kin n y ta 速t : t x cos 1 = v鱈i 錚 錚 錚 錚 錚 錚 2 ;0t ; v gi其i bt ph測ng trnh l樽ng gi存c ( ) ( ) ( ) ( ) 錚 錚 錚 錚 錚 錚 << > 錚 錚 錚 錚 錚 錚 << << 錚 錚 錚 錚 錚 錚 << << <<<<<< =< >+ >+>+ 4 5 1 3 5 1cos 5 4 5 3 cos0 1cos 25 16 25 9 cos0 625 144 cos1cos0 25 12 cossin0 25 12 0 cossin0144144.21225 cossin1225cossin21144 cossin35cossin12 12 35 sin 1 cos 1 2 2 22 2 22 x x t t t t tttty ttyyy tttt tttt tt ---------------------------------------------------------------------------