際際滷

際際滷Share a Scribd company logo
Math 11: Linear Algebra
Topic: Matrices
Matrices
Introduction
Matrices - Introduction
Matrix algebra has at least two advantages:
Reduces complicated systems of equations to simple
expressions
Adaptable to systematic method of mathematical treatment
and well suited to computers
Definition:
A matrix is a set or group of numbers arranged in a square
or rectangular array enclosed by two brackets
 
1
1  





 0
3
2
4






d
c
b
a
Matrices - Introduction
Properties:
A specified number of rows and a specified number of
columns
Two numbers (rows x columns) describe the dimensions
or size of the matrix.
Examples:
3x3 matrix
2x4 matrix
1x2 matrix











3
3
3
5
1
4
4
2
1





 
2
3
3
3
0
1
0
1
 
1
1
Matrices - Introduction
A matrix is denoted by a bold capital letter and the elements
within the matrix are denoted by lower case letters
e.g. matrix [A] with elements aij














mn
ij
m
m
n
ij
in
ij
a
a
a
a
a
a
a
a
a
a
a
a
2
1
2
22
21
12
11
...
...




i goes from 1 to m
j goes from 1 to n
Amxn=
mAn
Matrices - Introduction
TYPES OF MATRICES
1. Column matrix or vector:
The number of rows may be any integer but the number of
columns is always 1










2
4
1






 3
1












1
21
11
m
a
a
a
Matrices - Introduction
TYPES OF MATRICES
2. Row matrix or vector
Any number of columns but only one row
 
6
1
1  
2
5
3
0
 
n
a
a
a
a 1
13
12
11
Matrices - Introduction
TYPES OF MATRICES
3. Rectangular matrix
Contains more than one element and number of rows is not
equal to the number of columns













6
7
7
7
7
3
1
1






0
3
3
0
2
0
0
1
1
1
n
m
Matrices - Introduction
TYPES OF MATRICES
4. Square matrix
The number of rows is equal to the number of columns
(a square matrix A has an order of m)






0
3
1
1










1
6
6
0
9
9
1
1
1
m x m
The principal or main diagonal of a square matrix is composed of all
elements aij for which i=j
Matrices - Introduction
TYPES OF MATRICES
5. Diagonal matrix
A square matrix where all the elements are zero except those on
the main diagonal










1
0
0
0
2
0
0
0
1












9
0
0
0
0
5
0
0
0
0
3
0
0
0
0
3
i.e. aij =0 for all i = j
aij = 0 for some or all i = j
Matrices - Introduction
TYPES OF MATRICES
6. Unit or Identity matrix - I
A diagonal matrix with ones on the main diagonal












1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1






1
0
0
1
i.e. aij =0 for all i = j
a = 1 for some or all i = j






ij
ij
a
a
0
0
Matrices - Introduction
TYPES OF MATRICES
7. Null (zero) matrix - 0
All elements in the matrix are zero










0
0
0










0
0
0
0
0
0
0
0
0
0

ij
a For all i,j
Matrices - Introduction
TYPES OF MATRICES
8. Triangular matrix
A square matrix whose elements above or below the main
diagonal are all zero










3
2
5
0
1
2
0
0
1










3
2
5
0
1
2
0
0
1










3
0
0
6
1
0
9
8
1
Matrices - Introduction
TYPES OF MATRICES
8a. Upper triangular matrix
A square matrix whose elements below the main
diagonal are all zero
i.e. aij = 0 for all i > j










3
0
0
8
1
0
7
8
1












3
0
0
0
8
7
0
0
4
7
1
0
4
4
7
1










ij
ij
ij
ij
ij
ij
a
a
a
a
a
a
0
0
0
Matrices - Introduction
TYPES OF MATRICES
A square matrix whose elements above the main diagonal are all
zero
8b. Lower triangular matrix
i.e. aij = 0 for all i < j










3
2
5
0
1
2
0
0
1










ij
ij
ij
ij
ij
ij
a
a
a
a
a
a
0
0
0
Matrices  Introduction
TYPES OF MATRICES
9. Scalar matrix
A diagonal matrix whose main diagonal elements are
equal to the same scalar
A scalar is defined as a single number or constant










1
0
0
0
1
0
0
0
1












6
0
0
0
0
6
0
0
0
0
6
0
0
0
0
6
i.e. aij = 0 for all i = j
aij = a for all i = j










ij
ij
ij
a
a
a
0
0
0
0
0
0
Matrices
Matrix Operations
Matrices - Operations
EQUALITY OF MATRICES
Two matrices are said to be equal only when all
corresponding elements are equal
Therefore their size or dimensions are equal as well










3
2
5
0
1
2
0
0
1










3
2
5
0
1
2
0
0
1
A = B = A = B
Matrices - Operations
Some properties of equality:
IIf A = B, then B = A for all A and B
IIf A = B, and B = C, then A = C for all A, B and C










3
2
5
0
1
2
0
0
1
A = B =










33
32
31
23
22
21
13
12
11
b
b
b
b
b
b
b
b
b
If A = B then ij
ij b
a
Matrices - Operations
ADDITION AND SUBTRACTION OF MATRICES
The sum or difference of two matrices, A and B of the same
size yields a matrix C of the same size
ij
ij
ij b
a
c 

Matrices of different sizes cannot be added or subtracted
Matrices - Operations
Commutative Law:
A + B = B + A
Associative Law:
A + (B + C) = (A + B) + C = A + B + C


























9
7
2
5
8
8
3
2
4
6
5
1
6
5
2
1
3
7
A
2x3
B
2x3
C
2x3
Matrices - Operations
A + 0 = 0 + A = A
A + (-A) = 0 (where A is the matrix composed of aij as elements)





















1
2
2
2
2
5
8
0
1
0
2
1
7
2
3
2
4
6
Matrices - Operations
SCALAR MULTIPLICATION OF MATRICES
Matrices can be multiplied by a scalar (constant or single
element)
Let k be a scalar quantity; then
kA = Ak
Ex. If k=4 and















1
4
3
2
1
2
1
3
A
Matrices - Operations














































4
16
12
8
4
8
4
12
4
1
4
3
2
1
2
1
3
1
4
3
2
1
2
1
3
4
Properties:
 k (A + B) = kA + kB
 (k + g)A = kA + gA
 k(AB) = (kA)B = A(k)B
 k(gA) = (kg)A
Matrices - Operations
MULTIPLICATION OF MATRICES
The product of two matrices is another matrix
Two matrices A and B must be conformable for multiplication
to be possible
i.e. the number of columns of A must equal the number of rows
of B
Example.
A x B = C
(1x3) (3x1) (1x1)
Matrices - Operations
B x A = Not possible!
(2x1) (4x2)
A x B = Not possible!
(6x2) (6x3)
Example
A x B = C
(2x3) (3x2) (2x2)
Matrices - Operations























22
21
12
11
32
31
22
21
12
11
23
22
21
13
12
11
c
c
c
c
b
b
b
b
b
b
a
a
a
a
a
a
22
32
23
22
22
12
21
21
31
23
21
22
11
21
12
32
13
22
12
12
11
11
31
13
21
12
11
11
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
c
b
a
b
a
b
a
c
b
a
b
a
b
a
c
b
a
b
a
b
a
c
b
a
b
a
b
a
























Successive multiplication of row i of A with column j of
B  row by column multiplication
Matrices - Operations











































)
3
7
(
)
2
2
(
)
8
4
(
)
5
7
(
)
6
2
(
)
4
4
(
)
3
3
(
)
2
2
(
)
8
1
(
)
5
3
(
)
6
2
(
)
4
1
(
3
5
2
6
8
4
7
2
4
3
2
1







57
63
21
31
Remember also:
IA = A






1
0
0
1






57
63
21
31







57
63
21
31
Matrices - Operations
Assuming that matrices A, B and C are conformable for
the operations indicated, the following are true:
1. AI = IA = A
2. A(BC) = (AB)C = ABC - (associative law)
3. A(B+C) = AB + AC - (first distributive law)
4. (A+B)C = AC + BC - (second distributive law)
Caution!
1. AB not generally equal to BA, BA may not be conformable
2. If AB = 0, neither A nor B necessarily = 0
3. If AB = AC, B not necessarily = C
Matrices - Operations
AB not generally equal to BA, BA may not be conformable






















































0
10
6
23
0
5
2
1
2
0
4
3
20
15
8
3
2
0
4
3
0
5
2
1
2
0
4
3
0
5
2
1
ST
TS
S
T
Matrices - Operations
If AB = 0, neither A nor B necessarily = 0





















0
0
0
0
3
2
3
2
0
0
1
1
Matrices - Operations
TRANSPOSE OF A MATRIX
If :








1
3
5
7
4
2
3
2 A
A
2x3












1
7
3
4
5
2
3
2
T
T
A
A
Then transpose of A, denoted AT
is:
T
ji
ij a
a  For all i and j
Matrices - Operations
To transpose:
Interchange rows and columns
The dimensions of AT
are the reverse of the dimensions of A








1
3
5
7
4
2
3
2 A
A












1
7
3
4
5
2
2
3
T
T
A
A
2 x 3
3 x 2
Matrices - Operations
Properties of transposed matrices:
1. (A+B)T
= AT
+ BT
2. (AB)T
= BT
AT
3. (kA)T
= kAT
4. (AT
)T
= A
Matrices - Operations
1. (A+B)T
= AT
+ BT


























9
7
2
5
8
8
3
2
4
6
5
1
6
5
2
1
3
7












9
5
7
8
2
8






































9
5
7
8
2
8
3
6
2
5
4
1
6
1
5
3
2
7
Matrices - Operations
(AB)T
= BT
AT
 
   
8
2
3
0
2
1
0
1
2
1
1
8
2
8
2
2
1
1
3
2
0
0
1
1
Matrices - Operations
SYMMETRIC MATRICES
A Square matrix is symmetric if it is equal to its
transpose:
A = AT














d
b
b
a
A
d
b
b
a
A
T
Matrices - Operations
When the original matrix is square, transposition does not
affect the elements of the main diagonal














d
b
c
a
A
d
c
b
a
A
T
The identity matrix, I, a diagonal matrix D, and a scalar matrix, K,
are equal to their transpose since the diagonal is unaffected.
Matrices - Operations
INVERSE OF A MATRIX
Consider a scalar k. The inverse is the reciprocal or division of 1
by the scalar.
Example:
k=7 the inverse of k or k-1
= 1/k = 1/7
Division of matrices is not defined since there may be AB = AC
while B = C
Instead matrix inversion is used.
The inverse of a square matrix, A, if it exists, is the unique matrix
A-1
where:
AA-1
= A-1
A = I
Matrices - Operations
Example:


















3
2
1
1
1
2
1
3
1
2
2
A
A
A










































1
0
0
1
3
2
1
1
1
2
1
3
1
0
0
1
1
2
1
3
3
2
1
1
Because:
Matrices - Operations
Properties of the inverse:
1
1
1
1
1
1
1
1
1
1
)
(
)
(
)
(
)
(
)
(













A
k
kA
A
A
A
A
A
B
AB
T
T
A square matrix that has an inverse is called a nonsingular matrix
A matrix that does not have an inverse is called a singular matrix
Square matrices have inverses except when the determinant is zero
When the determinant of a matrix is zero the matrix is singular
Matrices - Operations
DETERMINANT OF A MATRIX
To compute the inverse of a matrix, the determinant is required
Each square matrix A has a unit scalar value called the
determinant of A, denoted by det A or |A|
5
6
2
1
5
6
2
1








A
A
If
then
Matrices - Operations
If A = [A] is a single element (1x1), then the determinant is
defined as the value of the element
Then |A| =det A = a11
If A is (n x n), its determinant may be defined in terms of order
(n-1) or less.
Matrices - Operations
MINORS
If A is an n x n matrix and one row and one column are deleted,
the resulting matrix is an (n-1) x (n-1) submatrix of A.
The determinant of such a submatrix is called a minor of A and
is designated by mij , where i and j correspond to the deleted
row and column, respectively.
mij is the minor of the element aij in A.
Matrices - Operations











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
Each element in A has a minor
Delete first row and column from A .
The determinant of the remaining 2 x 2 submatrix is the minor
of a11
eg.
33
32
23
22
11
a
a
a
a
m
Matrices - Operations
Therefore the minor of a12 is:
And the minor for a13 is:
33
31
23
21
12
a
a
a
a
m 
32
31
22
21
13
a
a
a
a
m
Matrices - Operations
COFACTORS
The cofactor Cij of an element aij is defined as:
ij
j
i
ij m
C 

 )
1
(
When the sum of a row number i and column j is even, cij = mij and
when i+j is odd, cij =-mij
13
13
3
1
13
12
12
2
1
12
11
11
1
1
11
)
1
(
)
3
,
1
(
)
1
(
)
2
,
1
(
)
1
(
)
1
,
1
(
m
m
j
i
c
m
m
j
i
c
m
m
j
i
c
Matrices - Operations
DETERMINANTS CONTINUED
The determinant of an n x n matrix A can now be defined as
n
nc
a
c
a
c
a
A
A 1
1
12
12
11
11
det 



 
The determinant of A is therefore the sum of the products of the
elements of the first row of A and their corresponding cofactors.
(It is possible to define |A| in terms of any other row or column
but for simplicity, the first row only is used)
Matrices - Operations
Therefore the 2 x 2 matrix :







22
21
12
11
a
a
a
a
A
Has cofactors :
22
22
11
11 a
a
m
c 


And:
21
21
12
12 a
a
m
c 





And the determinant of A is:
21
12
22
11
12
12
11
11 a
a
a
a
c
a
c
a
A
Matrices - Operations
Example 1:







2
1
1
3
A
5
)
1
)(
1
(
)
2
)(
3
( 


A
Matrices - Operations
For a 3 x 3 matrix:











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
The cofactors of the first row are:
31
22
32
21
32
31
22
21
13
31
23
33
21
33
31
23
21
12
32
23
33
22
33
32
23
22
11
)
(
a
a
a
a
a
a
a
a
c
a
a
a
a
a
a
a
a
c
a
a
a
a
a
a
a
a
c
Matrices - Operations
The determinant of a matrix A is:
21
12
22
11
12
12
11
11 a
a
a
a
c
a
c
a
A 



Which by substituting for the cofactors in this case is:
)
(
)
(
)
( 31
22
32
21
13
31
23
33
21
12
32
23
33
22
11 a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A
Matrices - Operations
Example 2:












1
0
1
3
2
0
1
0
1
A
4
)
2
0
)(
1
(
)
3
0
)(
0
(
)
0
2
)(
1
( 






A
)
(
)
(
)
( 31
22
32
21
13
31
23
33
21
12
32
23
33
22
11 a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A
Matrices - Operations
ADJOINT MATRICES
A cofactor matrix C of a matrix A is the square matrix of the same
order as A in which each element aij is replaced by its cofactor cij .
Example:








4
3
2
1
A








1
2
3
4
C
If
The cofactor C of A is
Matrices - Operations
The adjoint matrix of A, denoted by adj A, is the transpose of its
cofactor matrix
T
C
adjA 
It can be shown that:
A(adj A) = (adjA) A = |A| I
Example:





 














1
3
2
4
10
)
3
)(
2
(
)
4
)(
1
(
4
3
2
1
T
C
adjA
A
A
Matrices - Operations
I
adjA
A 10
10
0
0
10
1
3
2
4
4
3
2
1
)
( 












 








I
A
adjA 10
10
0
0
10
4
3
2
1
1
3
2
4
)
(
Matrices - Operations
USING THE ADJOINT MATRIX IN MATRIX INVERSION
A
adjA
A 
 1
Since
AA-1
= A-1
A = I
and
A(adj A) = (adjA) A = |A| I
then
Matrices - Operations
Example





 






 


1
.
0
3
.
0
2
.
0
4
.
0
1
3
2
4
10
1
1
A






 4
3
2
1
A =
To check AA-1
= A-1
A = I
I
A
A
I
AA




















 














 










1
0
0
1
4
3
2
1
1
.
0
3
.
0
2
.
0
4
.
0
1
0
0
1
1
.
0
3
.
0
2
.
0
4
.
0
4
3
2
1
1
1
Matrices - Operations
Example 2













1
2
1
0
1
2
1
1
3
A
|A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2
),
1
(
),
1
(
),
1
(
31
21
11









c
c
c
The determinant of A is
The elements of the cofactor matrix are
),
2
(
),
4
(
),
2
(
32
22
12









c
c
c
),
5
(
),
7
(
),
3
(
33
23
13






c
c
c
Matrices - Operations















5
2
1
7
4
1
3
2
1
C
The cofactor matrix is therefore
so
















5
7
3
2
4
2
1
1
1
T
C
adjA
and


































5
.
2
5
.
3
5
.
1
0
.
1
0
.
2
0
.
1
5
.
0
5
.
0
5
.
0
5
7
3
2
4
2
1
1
1
2
1
1
A
adjA
A
Matrices - Operations
The result can be checked using
AA-1
= A-1
A = I
The determinant of a matrix must not be zero for the inverse to
exist as there will not be a solution
Nonsingular matrices have non-zero determinants
Singular matrices have zero determinants
Matrix Inversion
Simple 2 x 2 case
Simple 2 x 2 case
Let







d
c
b
a
A
and








z
y
x
w
A 1
Since it is known that
A A-1
= I
then



















1
0
0
1
z
y
x
w
d
c
b
a
Simple 2 x 2 case
Multiplying gives
1
0
0
1








dz
cx
dy
cw
bz
ax
by
aw
bc
ad
A 

It can simply be shown that
Simple 2 x 2 case
thus
A
d
bc
da
d
w
d
cw
b
aw
d
cw
y
b
aw
y










1
1
Simple 2 x 2 case
A
b
bc
da
b
x
d
cx
b
ax
d
cx
z
b
ax
z












1
1
Simple 2 x 2 case
A
c
cb
ad
c
y
c
dy
a
by
c
dy
w
a
by
w












1
1
Simple 2 x 2 case
A
a
bc
ad
a
z
c
dz
a
bz
c
dz
x
a
bz
x










1
1
Simple 2 x 2 case
So that for a 2 x 2 matrix the inverse can be constructed
in a simple fashion as





















 a
c
b
d
A
A
a
A
c
A
b
A
d
1
Exchange elements of main diagonal
Change sign in elements off main diagonal
Divide resulting matrix by the determinant









z
y
x
w
A 1
Simple 2 x 2 case
Example



























2
.
0
4
.
0
3
.
0
1
.
0
2
4
3
1
10
1
1
4
3
2
1
A
A
Check inverse
A-1
A=I
I























1
0
0
1
1
4
3
2
2
4
3
1
10
1
Matrices and Linear Equations
Linear Equations
Linear Equations
Linear equations are common and important for survey
problems
Matrices can be used to express these linear equations and
aid in the computation of unknown values
Example
n equations in n unknowns, the aij are numerical coefficients,
the bi are constants and the xj are unknowns
n
n
nn
n
n
n
n
n
n
b
x
a
x
a
x
a
b
x
a
x
a
x
a
b
x
a
x
a
x
a
















2
2
1
1
2
2
2
22
1
21
1
1
2
12
1
11
Linear Equations
The equations may be expressed in the form
AX = B
where
,
, 2
1
1
1
2
22
21
1
12
11


























n
nn
n
n
n
n
x
x
x
X
a
a
a
a
a
a
a
a
a
A







and













n
b
b
b
B

2
1
n x n n x 1 n x 1
Number of unknowns = number of equations = n
Linear Equations
If the determinant is nonzero, the equation can be solved to produce
n numerical values for x that satisfy all the simultaneous equations
To solve, premultiply both sides of the equation by A-1
which exists
because |A| = 0
A-1
AX = A-1
B
Now since
A-1
A = I
We get
X = A-1
B
So if the inverse of the coefficient matrix is found, the unknowns,
X would be determined
Linear Equations
Example
3
2
1
2
2
3
3
2
1
2
1
3
2
1








x
x
x
x
x
x
x
x
The equations can be expressed as

































3
1
2
1
2
1
0
1
2
1
1
3
3
2
1
x
x
x
Linear Equations
When A-1
is computed the equation becomes






































 
7
3
2
3
1
2
5
.
2
5
.
3
5
.
1
0
.
1
0
.
2
0
.
1
5
.
0
5
.
0
5
.
0
1
B
A
X
Therefore
7
,
3
,
2
3
2
1





x
x
x
Linear Equations
The values for the unknowns should be checked by substitution
back into the initial equations
3
2
1
2
2
3
3
2
1
2
1
3
2
1








x
x
x
x
x
x
x
x
3
)
7
(
)
3
(
2
)
2
(
1
)
3
(
)
2
(
2
2
)
7
(
)
3
(
)
2
(
3
















7
,
3
,
2
3
2
1





x
x
x
Matrices and Determinants............ppt

More Related Content

Similar to Matrices and Determinants............ppt (20)

Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
VICTOROGOT4
R.Ganesh Kumar
R.Ganesh KumarR.Ganesh Kumar
R.Ganesh Kumar
GaneshKumar1103
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
mrsam3062
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
NirmalaSolapur
matrix algebra
matrix algebramatrix algebra
matrix algebra
kganu
matrices and function ( matrix)
matrices and function ( matrix)matrices and function ( matrix)
matrices and function ( matrix)
爨萎爨爨 爨む鉦Θ爨爨逗Σ
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
ParthDave57
Matrix Algebra for engineering and technical students.pptx
Matrix Algebra for engineering and technical students.pptxMatrix Algebra for engineering and technical students.pptx
Matrix Algebra for engineering and technical students.pptx
SumitVishwakarma55
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
AarjavPinara
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
Birinder Singh Gulati
Matrix introduction
Matrix introduction Matrix introduction
Matrix introduction
Learnbay Datascience
Matrix introduction and matrix operations.
Matrix introduction and matrix operations. Matrix introduction and matrix operations.
Matrix introduction and matrix operations.
Learnbay Datascience
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
SUCCESSSCIENCEACADEM
matrix
matrixmatrix
matrix
SatyamTiwari491261
Matrix
MatrixMatrix
Matrix
Umar Farooq
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
matrix further mahmatix for betc level 5.pptx
matrix further mahmatix for betc level 5.pptxmatrix further mahmatix for betc level 5.pptx
matrix further mahmatix for betc level 5.pptx
wasanalshawabkeh34
Matrices
MatricesMatrices
Matrices
Preeti Kashyap
Matrices
MatricesMatrices
Matrices
仍亠仆舒 仂弍仂舒仆
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
Ranjay Kumar
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
VICTOROGOT4
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.pptALLIED MATHEMATICS -I UNIT III MATRICES.ppt
ALLIED MATHEMATICS -I UNIT III MATRICES.ppt
mrsam3062
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
NirmalaSolapur
matrix algebra
matrix algebramatrix algebra
matrix algebra
kganu
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
ParthDave57
Matrix Algebra for engineering and technical students.pptx
Matrix Algebra for engineering and technical students.pptxMatrix Algebra for engineering and technical students.pptx
Matrix Algebra for engineering and technical students.pptx
SumitVishwakarma55
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
AarjavPinara
Matrix introduction and matrix operations.
Matrix introduction and matrix operations. Matrix introduction and matrix operations.
Matrix introduction and matrix operations.
Learnbay Datascience
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
Student
matrix further mahmatix for betc level 5.pptx
matrix further mahmatix for betc level 5.pptxmatrix further mahmatix for betc level 5.pptx
matrix further mahmatix for betc level 5.pptx
wasanalshawabkeh34
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
Ranjay Kumar

More from MAYLENEVILLAROSA (7)

Session 3: Assess .pptx
Session 3: Assess                  .pptxSession 3: Assess                  .pptx
Session 3: Assess .pptx
MAYLENEVILLAROSA
Session 2: Enetrgizer .pptx
Session 2: Enetrgizer              .pptxSession 2: Enetrgizer              .pptx
Session 2: Enetrgizer .pptx
MAYLENEVILLAROSA
Session 1Preparatory Activities .pptx
Session 1Preparatory Activities    .pptxSession 1Preparatory Activities    .pptx
Session 1Preparatory Activities .pptx
MAYLENEVILLAROSA
certificate of recognition..........pptx
certificate of recognition..........pptxcertificate of recognition..........pptx
certificate of recognition..........pptx
MAYLENEVILLAROSA
SIP QA Tool,,,,,,,,,...................pptx
SIP QA Tool,,,,,,,,,...................pptxSIP QA Tool,,,,,,,,,...................pptx
SIP QA Tool,,,,,,,,,...................pptx
MAYLENEVILLAROSA
LEA'S Research Project..............pptx
LEA'S Research Project..............pptxLEA'S Research Project..............pptx
LEA'S Research Project..............pptx
MAYLENEVILLAROSA
Career Guidance Advocacy Program Module 5 .pptx
Career Guidance Advocacy Program Module 5 .pptxCareer Guidance Advocacy Program Module 5 .pptx
Career Guidance Advocacy Program Module 5 .pptx
MAYLENEVILLAROSA
Session 3: Assess .pptx
Session 3: Assess                  .pptxSession 3: Assess                  .pptx
Session 3: Assess .pptx
MAYLENEVILLAROSA
Session 2: Enetrgizer .pptx
Session 2: Enetrgizer              .pptxSession 2: Enetrgizer              .pptx
Session 2: Enetrgizer .pptx
MAYLENEVILLAROSA
Session 1Preparatory Activities .pptx
Session 1Preparatory Activities    .pptxSession 1Preparatory Activities    .pptx
Session 1Preparatory Activities .pptx
MAYLENEVILLAROSA
certificate of recognition..........pptx
certificate of recognition..........pptxcertificate of recognition..........pptx
certificate of recognition..........pptx
MAYLENEVILLAROSA
SIP QA Tool,,,,,,,,,...................pptx
SIP QA Tool,,,,,,,,,...................pptxSIP QA Tool,,,,,,,,,...................pptx
SIP QA Tool,,,,,,,,,...................pptx
MAYLENEVILLAROSA
LEA'S Research Project..............pptx
LEA'S Research Project..............pptxLEA'S Research Project..............pptx
LEA'S Research Project..............pptx
MAYLENEVILLAROSA
Career Guidance Advocacy Program Module 5 .pptx
Career Guidance Advocacy Program Module 5 .pptxCareer Guidance Advocacy Program Module 5 .pptx
Career Guidance Advocacy Program Module 5 .pptx
MAYLENEVILLAROSA

Recently uploaded (20)

Useful environment methods in Odoo 18 - Odoo 際際滷s
Useful environment methods in Odoo 18 - Odoo 際際滷sUseful environment methods in Odoo 18 - Odoo 際際滷s
Useful environment methods in Odoo 18 - Odoo 際際滷s
Celine George
Storytelling instructions...............
Storytelling instructions...............Storytelling instructions...............
Storytelling instructions...............
Alexander Benito
Mate, a short story by Kate Grenville.pptx
Mate, a short story by Kate Grenville.pptxMate, a short story by Kate Grenville.pptx
Mate, a short story by Kate Grenville.pptx
Liny Jenifer
Rass MELAI : an Internet MELA Quiz Prelims - El Dorado 2025
Rass MELAI : an Internet MELA Quiz Prelims - El Dorado 2025Rass MELAI : an Internet MELA Quiz Prelims - El Dorado 2025
Rass MELAI : an Internet MELA Quiz Prelims - El Dorado 2025
Conquiztadors- the Quiz Society of Sri Venkateswara College
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
sandynavergas1
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Ajaz Hussain
How to use Init Hooks in Odoo 18 - Odoo 際際滷s
How to use Init Hooks in Odoo 18 - Odoo 際際滷sHow to use Init Hooks in Odoo 18 - Odoo 際際滷s
How to use Init Hooks in Odoo 18 - Odoo 際際滷s
Celine George
Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1...
Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1...Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1...
Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1...
pinkdvil200
CBSE Arabic Grammar - Class 10 ppt.pptx
CBSE Arabic Grammar - Class 10   ppt.pptxCBSE Arabic Grammar - Class 10   ppt.pptx
CBSE Arabic Grammar - Class 10 ppt.pptx
suhail849886
How to Modify Existing Web Pages in Odoo 18
How to Modify Existing Web Pages in Odoo 18How to Modify Existing Web Pages in Odoo 18
How to Modify Existing Web Pages in Odoo 18
Celine George
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptxFESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
DanmarieMuli1
How to Configure Restaurants in Odoo 17 Point of Sale
How to Configure Restaurants in Odoo 17 Point of SaleHow to Configure Restaurants in Odoo 17 Point of Sale
How to Configure Restaurants in Odoo 17 Point of Sale
Celine George
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷sReordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Celine George
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir DotanThe Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
History of Stoke Newington
Kaun TALHA quiz Finals -- El Dorado 2025
Kaun TALHA quiz Finals -- El Dorado 2025Kaun TALHA quiz Finals -- El Dorado 2025
Kaun TALHA quiz Finals -- El Dorado 2025
Conquiztadors- the Quiz Society of Sri Venkateswara College
cervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdfcervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdf
SamarHosni3
English 4 Quarter 4 Week 4 Classroom Obs
English 4 Quarter 4 Week 4 Classroom ObsEnglish 4 Quarter 4 Week 4 Classroom Obs
English 4 Quarter 4 Week 4 Classroom Obs
NerissaMendez1
The Broccoli Dog's inner voice (look A)
The Broccoli Dog's inner voice  (look A)The Broccoli Dog's inner voice  (look A)
The Broccoli Dog's inner voice (look A)
merasan
APM People Interest Network Conference - Tim Lyons - The neurological levels ...
APM People Interest Network Conference - Tim Lyons - The neurological levels ...APM People Interest Network Conference - Tim Lyons - The neurological levels ...
APM People Interest Network Conference - Tim Lyons - The neurological levels ...
Association for Project Management
Research & Research Methods: Basic Concepts and Types.pptx
Research & Research Methods: Basic Concepts and Types.pptxResearch & Research Methods: Basic Concepts and Types.pptx
Research & Research Methods: Basic Concepts and Types.pptx
Dr. Sarita Anand
Useful environment methods in Odoo 18 - Odoo 際際滷s
Useful environment methods in Odoo 18 - Odoo 際際滷sUseful environment methods in Odoo 18 - Odoo 際際滷s
Useful environment methods in Odoo 18 - Odoo 際際滷s
Celine George
Storytelling instructions...............
Storytelling instructions...............Storytelling instructions...............
Storytelling instructions...............
Alexander Benito
Mate, a short story by Kate Grenville.pptx
Mate, a short story by Kate Grenville.pptxMate, a short story by Kate Grenville.pptx
Mate, a short story by Kate Grenville.pptx
Liny Jenifer
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
Eng7-Q4-Lesson 1 Part 1 Understanding Discipline-Specific Words, Voice, and T...
sandynavergas1
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Blind Spots in AI and Formulation Science Knowledge Pyramid (Updated Perspect...
Ajaz Hussain
How to use Init Hooks in Odoo 18 - Odoo 際際滷s
How to use Init Hooks in Odoo 18 - Odoo 際際滷sHow to use Init Hooks in Odoo 18 - Odoo 際際滷s
How to use Init Hooks in Odoo 18 - Odoo 際際滷s
Celine George
Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1...
Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1...Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1 2024  Lesson Plan M1...
Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1 2024 Lesson Plan M1...
pinkdvil200
CBSE Arabic Grammar - Class 10 ppt.pptx
CBSE Arabic Grammar - Class 10   ppt.pptxCBSE Arabic Grammar - Class 10   ppt.pptx
CBSE Arabic Grammar - Class 10 ppt.pptx
suhail849886
How to Modify Existing Web Pages in Odoo 18
How to Modify Existing Web Pages in Odoo 18How to Modify Existing Web Pages in Odoo 18
How to Modify Existing Web Pages in Odoo 18
Celine George
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptxFESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
FESTIVAL: SINULOG & THINGYAN-LESSON 4.pptx
DanmarieMuli1
How to Configure Restaurants in Odoo 17 Point of Sale
How to Configure Restaurants in Odoo 17 Point of SaleHow to Configure Restaurants in Odoo 17 Point of Sale
How to Configure Restaurants in Odoo 17 Point of Sale
Celine George
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷sReordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Reordering Rules in Odoo 17 Inventory - Odoo 際際滷s
Celine George
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir DotanThe Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
The Battle of Belgrade Road: A WW1 Street Renaming Saga by Amir Dotan
History of Stoke Newington
cervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdfcervical spine mobilization manual therapy .pdf
cervical spine mobilization manual therapy .pdf
SamarHosni3
English 4 Quarter 4 Week 4 Classroom Obs
English 4 Quarter 4 Week 4 Classroom ObsEnglish 4 Quarter 4 Week 4 Classroom Obs
English 4 Quarter 4 Week 4 Classroom Obs
NerissaMendez1
The Broccoli Dog's inner voice (look A)
The Broccoli Dog's inner voice  (look A)The Broccoli Dog's inner voice  (look A)
The Broccoli Dog's inner voice (look A)
merasan
APM People Interest Network Conference - Tim Lyons - The neurological levels ...
APM People Interest Network Conference - Tim Lyons - The neurological levels ...APM People Interest Network Conference - Tim Lyons - The neurological levels ...
APM People Interest Network Conference - Tim Lyons - The neurological levels ...
Association for Project Management
Research & Research Methods: Basic Concepts and Types.pptx
Research & Research Methods: Basic Concepts and Types.pptxResearch & Research Methods: Basic Concepts and Types.pptx
Research & Research Methods: Basic Concepts and Types.pptx
Dr. Sarita Anand

Matrices and Determinants............ppt

  • 1. Math 11: Linear Algebra Topic: Matrices
  • 3. Matrices - Introduction Matrix algebra has at least two advantages: Reduces complicated systems of equations to simple expressions Adaptable to systematic method of mathematical treatment and well suited to computers Definition: A matrix is a set or group of numbers arranged in a square or rectangular array enclosed by two brackets 1 1 0 3 2 4 d c b a
  • 4. Matrices - Introduction Properties: A specified number of rows and a specified number of columns Two numbers (rows x columns) describe the dimensions or size of the matrix. Examples: 3x3 matrix 2x4 matrix 1x2 matrix 3 3 3 5 1 4 4 2 1 2 3 3 3 0 1 0 1 1 1
  • 5. Matrices - Introduction A matrix is denoted by a bold capital letter and the elements within the matrix are denoted by lower case letters e.g. matrix [A] with elements aij mn ij m m n ij in ij a a a a a a a a a a a a 2 1 2 22 21 12 11 ... ... i goes from 1 to m j goes from 1 to n Amxn= mAn
  • 6. Matrices - Introduction TYPES OF MATRICES 1. Column matrix or vector: The number of rows may be any integer but the number of columns is always 1 2 4 1 3 1 1 21 11 m a a a
  • 7. Matrices - Introduction TYPES OF MATRICES 2. Row matrix or vector Any number of columns but only one row 6 1 1 2 5 3 0 n a a a a 1 13 12 11
  • 8. Matrices - Introduction TYPES OF MATRICES 3. Rectangular matrix Contains more than one element and number of rows is not equal to the number of columns 6 7 7 7 7 3 1 1 0 3 3 0 2 0 0 1 1 1 n m
  • 9. Matrices - Introduction TYPES OF MATRICES 4. Square matrix The number of rows is equal to the number of columns (a square matrix A has an order of m) 0 3 1 1 1 6 6 0 9 9 1 1 1 m x m The principal or main diagonal of a square matrix is composed of all elements aij for which i=j
  • 10. Matrices - Introduction TYPES OF MATRICES 5. Diagonal matrix A square matrix where all the elements are zero except those on the main diagonal 1 0 0 0 2 0 0 0 1 9 0 0 0 0 5 0 0 0 0 3 0 0 0 0 3 i.e. aij =0 for all i = j aij = 0 for some or all i = j
  • 11. Matrices - Introduction TYPES OF MATRICES 6. Unit or Identity matrix - I A diagonal matrix with ones on the main diagonal 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 i.e. aij =0 for all i = j a = 1 for some or all i = j ij ij a a 0 0
  • 12. Matrices - Introduction TYPES OF MATRICES 7. Null (zero) matrix - 0 All elements in the matrix are zero 0 0 0 0 0 0 0 0 0 0 0 0 0 ij a For all i,j
  • 13. Matrices - Introduction TYPES OF MATRICES 8. Triangular matrix A square matrix whose elements above or below the main diagonal are all zero 3 2 5 0 1 2 0 0 1 3 2 5 0 1 2 0 0 1 3 0 0 6 1 0 9 8 1
  • 14. Matrices - Introduction TYPES OF MATRICES 8a. Upper triangular matrix A square matrix whose elements below the main diagonal are all zero i.e. aij = 0 for all i > j 3 0 0 8 1 0 7 8 1 3 0 0 0 8 7 0 0 4 7 1 0 4 4 7 1 ij ij ij ij ij ij a a a a a a 0 0 0
  • 15. Matrices - Introduction TYPES OF MATRICES A square matrix whose elements above the main diagonal are all zero 8b. Lower triangular matrix i.e. aij = 0 for all i < j 3 2 5 0 1 2 0 0 1 ij ij ij ij ij ij a a a a a a 0 0 0
  • 16. Matrices Introduction TYPES OF MATRICES 9. Scalar matrix A diagonal matrix whose main diagonal elements are equal to the same scalar A scalar is defined as a single number or constant 1 0 0 0 1 0 0 0 1 6 0 0 0 0 6 0 0 0 0 6 0 0 0 0 6 i.e. aij = 0 for all i = j aij = a for all i = j ij ij ij a a a 0 0 0 0 0 0
  • 18. Matrices - Operations EQUALITY OF MATRICES Two matrices are said to be equal only when all corresponding elements are equal Therefore their size or dimensions are equal as well 3 2 5 0 1 2 0 0 1 3 2 5 0 1 2 0 0 1 A = B = A = B
  • 19. Matrices - Operations Some properties of equality: IIf A = B, then B = A for all A and B IIf A = B, and B = C, then A = C for all A, B and C 3 2 5 0 1 2 0 0 1 A = B = 33 32 31 23 22 21 13 12 11 b b b b b b b b b If A = B then ij ij b a
  • 20. Matrices - Operations ADDITION AND SUBTRACTION OF MATRICES The sum or difference of two matrices, A and B of the same size yields a matrix C of the same size ij ij ij b a c Matrices of different sizes cannot be added or subtracted
  • 21. Matrices - Operations Commutative Law: A + B = B + A Associative Law: A + (B + C) = (A + B) + C = A + B + C 9 7 2 5 8 8 3 2 4 6 5 1 6 5 2 1 3 7 A 2x3 B 2x3 C 2x3
  • 22. Matrices - Operations A + 0 = 0 + A = A A + (-A) = 0 (where A is the matrix composed of aij as elements) 1 2 2 2 2 5 8 0 1 0 2 1 7 2 3 2 4 6
  • 23. Matrices - Operations SCALAR MULTIPLICATION OF MATRICES Matrices can be multiplied by a scalar (constant or single element) Let k be a scalar quantity; then kA = Ak Ex. If k=4 and 1 4 3 2 1 2 1 3 A
  • 24. Matrices - Operations 4 16 12 8 4 8 4 12 4 1 4 3 2 1 2 1 3 1 4 3 2 1 2 1 3 4 Properties: k (A + B) = kA + kB (k + g)A = kA + gA k(AB) = (kA)B = A(k)B k(gA) = (kg)A
  • 25. Matrices - Operations MULTIPLICATION OF MATRICES The product of two matrices is another matrix Two matrices A and B must be conformable for multiplication to be possible i.e. the number of columns of A must equal the number of rows of B Example. A x B = C (1x3) (3x1) (1x1)
  • 26. Matrices - Operations B x A = Not possible! (2x1) (4x2) A x B = Not possible! (6x2) (6x3) Example A x B = C (2x3) (3x2) (2x2)
  • 29. Matrices - Operations Assuming that matrices A, B and C are conformable for the operations indicated, the following are true: 1. AI = IA = A 2. A(BC) = (AB)C = ABC - (associative law) 3. A(B+C) = AB + AC - (first distributive law) 4. (A+B)C = AC + BC - (second distributive law) Caution! 1. AB not generally equal to BA, BA may not be conformable 2. If AB = 0, neither A nor B necessarily = 0 3. If AB = AC, B not necessarily = C
  • 30. Matrices - Operations AB not generally equal to BA, BA may not be conformable 0 10 6 23 0 5 2 1 2 0 4 3 20 15 8 3 2 0 4 3 0 5 2 1 2 0 4 3 0 5 2 1 ST TS S T
  • 31. Matrices - Operations If AB = 0, neither A nor B necessarily = 0 0 0 0 0 3 2 3 2 0 0 1 1
  • 32. Matrices - Operations TRANSPOSE OF A MATRIX If : 1 3 5 7 4 2 3 2 A A 2x3 1 7 3 4 5 2 3 2 T T A A Then transpose of A, denoted AT is: T ji ij a a For all i and j
  • 33. Matrices - Operations To transpose: Interchange rows and columns The dimensions of AT are the reverse of the dimensions of A 1 3 5 7 4 2 3 2 A A 1 7 3 4 5 2 2 3 T T A A 2 x 3 3 x 2
  • 34. Matrices - Operations Properties of transposed matrices: 1. (A+B)T = AT + BT 2. (AB)T = BT AT 3. (kA)T = kAT 4. (AT )T = A
  • 35. Matrices - Operations 1. (A+B)T = AT + BT 9 7 2 5 8 8 3 2 4 6 5 1 6 5 2 1 3 7 9 5 7 8 2 8 9 5 7 8 2 8 3 6 2 5 4 1 6 1 5 3 2 7
  • 36. Matrices - Operations (AB)T = BT AT 8 2 3 0 2 1 0 1 2 1 1 8 2 8 2 2 1 1 3 2 0 0 1 1
  • 37. Matrices - Operations SYMMETRIC MATRICES A Square matrix is symmetric if it is equal to its transpose: A = AT d b b a A d b b a A T
  • 38. Matrices - Operations When the original matrix is square, transposition does not affect the elements of the main diagonal d b c a A d c b a A T The identity matrix, I, a diagonal matrix D, and a scalar matrix, K, are equal to their transpose since the diagonal is unaffected.
  • 39. Matrices - Operations INVERSE OF A MATRIX Consider a scalar k. The inverse is the reciprocal or division of 1 by the scalar. Example: k=7 the inverse of k or k-1 = 1/k = 1/7 Division of matrices is not defined since there may be AB = AC while B = C Instead matrix inversion is used. The inverse of a square matrix, A, if it exists, is the unique matrix A-1 where: AA-1 = A-1 A = I
  • 41. Matrices - Operations Properties of the inverse: 1 1 1 1 1 1 1 1 1 1 ) ( ) ( ) ( ) ( ) ( A k kA A A A A A B AB T T A square matrix that has an inverse is called a nonsingular matrix A matrix that does not have an inverse is called a singular matrix Square matrices have inverses except when the determinant is zero When the determinant of a matrix is zero the matrix is singular
  • 42. Matrices - Operations DETERMINANT OF A MATRIX To compute the inverse of a matrix, the determinant is required Each square matrix A has a unit scalar value called the determinant of A, denoted by det A or |A| 5 6 2 1 5 6 2 1 A A If then
  • 43. Matrices - Operations If A = [A] is a single element (1x1), then the determinant is defined as the value of the element Then |A| =det A = a11 If A is (n x n), its determinant may be defined in terms of order (n-1) or less.
  • 44. Matrices - Operations MINORS If A is an n x n matrix and one row and one column are deleted, the resulting matrix is an (n-1) x (n-1) submatrix of A. The determinant of such a submatrix is called a minor of A and is designated by mij , where i and j correspond to the deleted row and column, respectively. mij is the minor of the element aij in A.
  • 45. Matrices - Operations 33 32 31 23 22 21 13 12 11 a a a a a a a a a A Each element in A has a minor Delete first row and column from A . The determinant of the remaining 2 x 2 submatrix is the minor of a11 eg. 33 32 23 22 11 a a a a m
  • 46. Matrices - Operations Therefore the minor of a12 is: And the minor for a13 is: 33 31 23 21 12 a a a a m 32 31 22 21 13 a a a a m
  • 47. Matrices - Operations COFACTORS The cofactor Cij of an element aij is defined as: ij j i ij m C ) 1 ( When the sum of a row number i and column j is even, cij = mij and when i+j is odd, cij =-mij 13 13 3 1 13 12 12 2 1 12 11 11 1 1 11 ) 1 ( ) 3 , 1 ( ) 1 ( ) 2 , 1 ( ) 1 ( ) 1 , 1 ( m m j i c m m j i c m m j i c
  • 48. Matrices - Operations DETERMINANTS CONTINUED The determinant of an n x n matrix A can now be defined as n nc a c a c a A A 1 1 12 12 11 11 det The determinant of A is therefore the sum of the products of the elements of the first row of A and their corresponding cofactors. (It is possible to define |A| in terms of any other row or column but for simplicity, the first row only is used)
  • 49. Matrices - Operations Therefore the 2 x 2 matrix : 22 21 12 11 a a a a A Has cofactors : 22 22 11 11 a a m c And: 21 21 12 12 a a m c And the determinant of A is: 21 12 22 11 12 12 11 11 a a a a c a c a A
  • 50. Matrices - Operations Example 1: 2 1 1 3 A 5 ) 1 )( 1 ( ) 2 )( 3 ( A
  • 51. Matrices - Operations For a 3 x 3 matrix: 33 32 31 23 22 21 13 12 11 a a a a a a a a a A The cofactors of the first row are: 31 22 32 21 32 31 22 21 13 31 23 33 21 33 31 23 21 12 32 23 33 22 33 32 23 22 11 ) ( a a a a a a a a c a a a a a a a a c a a a a a a a a c
  • 52. Matrices - Operations The determinant of a matrix A is: 21 12 22 11 12 12 11 11 a a a a c a c a A Which by substituting for the cofactors in this case is: ) ( ) ( ) ( 31 22 32 21 13 31 23 33 21 12 32 23 33 22 11 a a a a a a a a a a a a a a a A
  • 53. Matrices - Operations Example 2: 1 0 1 3 2 0 1 0 1 A 4 ) 2 0 )( 1 ( ) 3 0 )( 0 ( ) 0 2 )( 1 ( A ) ( ) ( ) ( 31 22 32 21 13 31 23 33 21 12 32 23 33 22 11 a a a a a a a a a a a a a a a A
  • 54. Matrices - Operations ADJOINT MATRICES A cofactor matrix C of a matrix A is the square matrix of the same order as A in which each element aij is replaced by its cofactor cij . Example: 4 3 2 1 A 1 2 3 4 C If The cofactor C of A is
  • 55. Matrices - Operations The adjoint matrix of A, denoted by adj A, is the transpose of its cofactor matrix T C adjA It can be shown that: A(adj A) = (adjA) A = |A| I Example: 1 3 2 4 10 ) 3 )( 2 ( ) 4 )( 1 ( 4 3 2 1 T C adjA A A
  • 56. Matrices - Operations I adjA A 10 10 0 0 10 1 3 2 4 4 3 2 1 ) ( I A adjA 10 10 0 0 10 4 3 2 1 1 3 2 4 ) (
  • 57. Matrices - Operations USING THE ADJOINT MATRIX IN MATRIX INVERSION A adjA A 1 Since AA-1 = A-1 A = I and A(adj A) = (adjA) A = |A| I then
  • 58. Matrices - Operations Example 1 . 0 3 . 0 2 . 0 4 . 0 1 3 2 4 10 1 1 A 4 3 2 1 A = To check AA-1 = A-1 A = I I A A I AA 1 0 0 1 4 3 2 1 1 . 0 3 . 0 2 . 0 4 . 0 1 0 0 1 1 . 0 3 . 0 2 . 0 4 . 0 4 3 2 1 1 1
  • 59. Matrices - Operations Example 2 1 2 1 0 1 2 1 1 3 A |A| = (3)(-1-0)-(-1)(-2-0)+(1)(4-1) = -2 ), 1 ( ), 1 ( ), 1 ( 31 21 11 c c c The determinant of A is The elements of the cofactor matrix are ), 2 ( ), 4 ( ), 2 ( 32 22 12 c c c ), 5 ( ), 7 ( ), 3 ( 33 23 13 c c c
  • 60. Matrices - Operations 5 2 1 7 4 1 3 2 1 C The cofactor matrix is therefore so 5 7 3 2 4 2 1 1 1 T C adjA and 5 . 2 5 . 3 5 . 1 0 . 1 0 . 2 0 . 1 5 . 0 5 . 0 5 . 0 5 7 3 2 4 2 1 1 1 2 1 1 A adjA A
  • 61. Matrices - Operations The result can be checked using AA-1 = A-1 A = I The determinant of a matrix must not be zero for the inverse to exist as there will not be a solution Nonsingular matrices have non-zero determinants Singular matrices have zero determinants
  • 63. Simple 2 x 2 case Let d c b a A and z y x w A 1 Since it is known that A A-1 = I then 1 0 0 1 z y x w d c b a
  • 64. Simple 2 x 2 case Multiplying gives 1 0 0 1 dz cx dy cw bz ax by aw bc ad A It can simply be shown that
  • 65. Simple 2 x 2 case thus A d bc da d w d cw b aw d cw y b aw y 1 1
  • 66. Simple 2 x 2 case A b bc da b x d cx b ax d cx z b ax z 1 1
  • 67. Simple 2 x 2 case A c cb ad c y c dy a by c dy w a by w 1 1
  • 68. Simple 2 x 2 case A a bc ad a z c dz a bz c dz x a bz x 1 1
  • 69. Simple 2 x 2 case So that for a 2 x 2 matrix the inverse can be constructed in a simple fashion as a c b d A A a A c A b A d 1 Exchange elements of main diagonal Change sign in elements off main diagonal Divide resulting matrix by the determinant z y x w A 1
  • 70. Simple 2 x 2 case Example 2 . 0 4 . 0 3 . 0 1 . 0 2 4 3 1 10 1 1 4 3 2 1 A A Check inverse A-1 A=I I 1 0 0 1 1 4 3 2 2 4 3 1 10 1
  • 71. Matrices and Linear Equations Linear Equations
  • 72. Linear Equations Linear equations are common and important for survey problems Matrices can be used to express these linear equations and aid in the computation of unknown values Example n equations in n unknowns, the aij are numerical coefficients, the bi are constants and the xj are unknowns n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 2 2 1 1 2 2 2 22 1 21 1 1 2 12 1 11
  • 73. Linear Equations The equations may be expressed in the form AX = B where , , 2 1 1 1 2 22 21 1 12 11 n nn n n n n x x x X a a a a a a a a a A and n b b b B 2 1 n x n n x 1 n x 1 Number of unknowns = number of equations = n
  • 74. Linear Equations If the determinant is nonzero, the equation can be solved to produce n numerical values for x that satisfy all the simultaneous equations To solve, premultiply both sides of the equation by A-1 which exists because |A| = 0 A-1 AX = A-1 B Now since A-1 A = I We get X = A-1 B So if the inverse of the coefficient matrix is found, the unknowns, X would be determined
  • 75. Linear Equations Example 3 2 1 2 2 3 3 2 1 2 1 3 2 1 x x x x x x x x The equations can be expressed as 3 1 2 1 2 1 0 1 2 1 1 3 3 2 1 x x x
  • 76. Linear Equations When A-1 is computed the equation becomes 7 3 2 3 1 2 5 . 2 5 . 3 5 . 1 0 . 1 0 . 2 0 . 1 5 . 0 5 . 0 5 . 0 1 B A X Therefore 7 , 3 , 2 3 2 1 x x x
  • 77. Linear Equations The values for the unknowns should be checked by substitution back into the initial equations 3 2 1 2 2 3 3 2 1 2 1 3 2 1 x x x x x x x x 3 ) 7 ( ) 3 ( 2 ) 2 ( 1 ) 3 ( ) 2 ( 2 2 ) 7 ( ) 3 ( ) 2 ( 3 7 , 3 , 2 3 2 1 x x x