データマイニングや機械学習をやるときによく問題となる「リーケージ」を防ぐ方法について論じた論文「Leakage in Data Mining: Formulation, Detecting, and Avoidance」(Kaufman, Shachar, et al., ACM Transactions on Knowledge Discovery from Data (TKDD) 6.4 (2012): 1-21.)を解説します。
主な内容は以下のとおりです。
?過去に起きたリーケージの事例の紹介
?リーケージを防ぐための2つの考え方
?リーケージの発見
?リーケージの修正
データマイニングや機械学習をやるときによく問題となる「リーケージ」を防ぐ方法について論じた論文「Leakage in Data Mining: Formulation, Detecting, and Avoidance」(Kaufman, Shachar, et al., ACM Transactions on Knowledge Discovery from Data (TKDD) 6.4 (2012): 1-21.)を解説します。
主な内容は以下のとおりです。
?過去に起きたリーケージの事例の紹介
?リーケージを防ぐための2つの考え方
?リーケージの発見
?リーケージの修正
7. 例:MLOpsツールのカバー範囲の一例
- Data Versioning
- Feature Store
- Experiment Tracking
- Training Orchestration
- Explainability
- Model Serving
- Model Monitoring
データ準備/
探索的データ解析
モデル解釈
モデル実装
モデル運用
MLOps Toys | A Curated List of Machine Learning Projects より