際際滷

際際滷Share a Scribd company logo
MODEL REGRESI NON LINEAR
DAN UJI DETEKSI HUBUNGAN NONLINEAR
Azwar Rhosyied1  1305 100 054
Saudi Imam Besari2  1306 100 046
Arisman Wijaya3  1306 100 042
1

rhosyied54@gmail.com, 2e_saudi@ymail.com , 3arin_mathlover@yahoo.co.id

Abstract
In our living, there are many data doesnt has linear pattern. So it is fit to using non
linear model to solving it. The purpose of this research is applying non linear
regression model for three cases using SPSS, SAS and R software. The best model
for the first case is adalah Yt = 81,84 + 102,40 exp(t/203,19) + 竜 .

29,4v
+ 竜 is the model for the second case. All software has the same
w  2,22
result in estimating parameter for this model. For the third case, we use the newest
model, Nelson Siegel (N-S) and Nelson Siegel Svensson (N-S-S) model with yield
curve data. The result for each model is YTM = 0.133 - 0.031* exp( - TTM / 2.265) 
0.014*exp((TTM /2.265) * exp( - TTM / 2.265)) expecially for N-S model, YTM =
0.647 + 0.4*exp( -TTM / 0.601)  0.087* ((TTM / 0.601) * exp(TTM /0.601)) + 0.004 *
(( -TTM / 0.545) * exp( - TTM / 0.545)) expecially for N-S-S model.
T =

Keywords : Nelson Siegel, stormer viscometer, model non linear, yield curve

1. Pendahuluan
Peristiwa di sekitar sering merupakan kejadian yang dapat dimodelkan
dengan persamaan regresi. Berdasarkan hubungan kelinearan antar parameter
dalam persamaan regresi, model regresi mempunyai dua bentuk hubungan
kelinearan yaitu regresi linear dan regresi nonlinear. Seringkali kejadian dalam
kehidupan sehari-hari lebih sering merupakan pola model regresi nonlinear. Untuk
itu dalam makalah ini akan dibahas mengenai model regresi nonlinear. Beberapa
penelitian yang menggunakan regresi non-linear diantaranya oleh Miconnet,
Geeraerd, Impe, Roso, dan Cornu (2005) yaitu memodelkan produksi padi dengan
least square non-linear dalam permodelan kurva pertumbuhan dalam produksi.
Dalam makalah ini sebagai studi kasus adalah data tentang program
penurunan berat badan yang diikuti oleh seorang pasien laki-laki. Data kedua
adalah data the stromer viscometer dan data tentang yield curve. Proses untuk
mendapatkan model nonlinear pada penelitian ini digunakan software SPSS, SAS
dan R, sehingga dapat membandingkan hasil output dari ketiga software tersebut.

2. Tinjauan Pustaka
Pada bagian ini dibahas mengenai metode dan beberapa teori yang
mendukung untuk pengerjaan analisis hubungan non-linear.

1
2.1 Uji Deteksi Non-linear dengan Uji Ramseys RESET, Uji White dan
Uji Terasvirta
Uji Ramseys RESET, Uji White dan Uji Terasvirta untuk mendeteksi apakah
suatu model mengikuti pola linear atau non-linear tersedia dalam software R.
Statistik uji Ramseys RESET adalah (Lihat pembahasan lengkap di Gujarati, 1996).

F=

2
2
(Rnew  Rold ) / p
2
(1  Rnew ) / (n  k)

(1)

dengan p jumlah variabel independen baru, k jumlah parameter pada model baru, n
jumlah data. Kesimpulanya Ho ditolak bila F > F(留,p,n-k)
Uji White adalah uji deteksi non-linearitas yang dikembangkan dari model
neural network yang ditemukan oleh White (1989). Uji white menggunakan statistik
2 dan F. Prosedur yang digunakan untuk 2 adalah :
a. Meregresikan yt pada 1, x1, x2, , xp dan menghitung nilai-nilai residual ut .

b. Meregresikan u t pada 1, x1, x2, , xp dan m prediktor tambahan dan
kemudian hitung koefisien determinasi dari regresi R2. Dalam uji ini, m
'
prediktor tambahan ini adalah nilai-nilai dari hasil dari (粒 j wt ) hasil dari
suatu transformasi komponen utama.
c. Hitung 2 =nR2, dimana n adalah jumlah pengamatan yang digunakan.
2
Dengan hipotesis linearitas, 2 mendekati distribusi ( m ) atau tolak Ho
jika P-value < 留.
Uji Terasvirta adalah uji deteksi non-linearitas yang juga dikembangkan dari
model neural network dan termasuk dalam kelompok uji tipe Lagrange Multiplier
(LM) yang dikembangkan dengan ekspansi Taylor (Terasvirta, 1993). Pengambilan
kesimpulan ketiga uji tersebut dapat dilihat melalui nilai P-value, yaitu tolak Ho jika
kurang dari 留 .

2.2 Model Regresi Non-linear Parametrik
Berdasarkan kelinearan antar parameter pada model regresi, maka suatu
model regresi dapat diklasifikasikan menjadi dua macam yaitu model linear dan
non-linear. Model regresi dikatakan linear jika dapat dinyatakan dalam model :
y = 硫0 + 硫1 x1+硫2 x2 + 硫3 x3 + ... + 硫k xk + 竜
(2)
Apabila model tidak dapat dinyatakan dalam model tersebut maka model yang
diperoleh adalah model non-linear. Secara umum model regresi non-linear
parametrik dengan
sebagai variabel respon pada replikasi sebanyak
dan
setiap nilai
merupakan variabel independen.dapat dinyatakan dalam persamaan
(Ripley, 2002) :
(3)
Yij = f ( xi , 慮) +竜ij
dengan f adalah fungsi regresi dengan parameter 慮 yang harus diduga dan adalah
galat dengan sifat N(0,留). Salah satu metode pendugaan parameter dalam sistem
non-linear adalah jalan tengah Marquardt (Marquadts compromise). Metode
Marquardt merupakan kompromi atau jalan tengah antara metode linearisasi atau
deret Taylor dengan metode steepest descent (Draper & Smith, 1996).

2
2.3 Model Nelson Siegel (N-S) dan Nelson Siegel Svensson (N-S-S)
Tahun 1987, Nelson dan Siegel menunjukkan yield curve dari model yang
terletak pada bentuk range yang sama. Model N-S dan N-S-S merupakan
pendekatan untuk mendapatkan model yield curve. Model N-S dinyatakan dalam
persamaan sebagai berikut
錚錚 m 錚
錚 m錚
錚 m 錚駈9
粒 ( m ) = 硫 0 + 硫1 exp錚  錚 + 硫 2 exp 錚錚 錚 exp錚  錚件
(4)
錚  錚
錚  錚醐
錚逸  錚

dengan 粒 ( m ) adalah nilai yield to maturity (YTM yang )merupakan yield dengan
pendekatan forward rate pada maturitas m atau time to maturity (TTM). Sedangkan
parameter  merupaka konstanta waktu dari belokan kurva dan parameter 硫
0
menunjukkan nilai asimtotik atau konstanta, serta 硫 dan 硫2 merupakan
1
parameter yang menunjukkan arah lengkungan dari kurva.
Sedangkan model N-S-S berikut merupakan pengembangan dari model N-S
dengan penambahan parameter 硫 dan 3 yang digunakan untuk menambah
3
fleksibilitas kurva (Amoako et al, 2005).
錚錚 m 錚
錚錚 m 錚
錚 m錚
錚 m 錚駈9
錚 m 錚駈9
粒 ( m ) = 硫 0 + 硫1 exp錚  錚 + 硫 2 exp 錚錚 錚 exp錚  錚件 + 硫 3 錚錚 錚 exp錚  錚件 (5)
錚  錚
錚 錚
錚  錚
錚 錚
錚  錚
錚 1錚
錚 1 錚醐
錚 2 錚醐
錚逸 1 錚
錚逸 2 錚

3. Metodologi Penelitian
Dalam penelitian ini digunakan tiga jenis data. Masalah pertama adalah data
mengenai program penurunan berat badan yang diikuti oleh pasien laki-laki dengan
variabel prediktor adalah hari (t) dan berat badan dalam kg (yt) sebagai variabel
respon. Data kedua mengenai The Stormer Viscometer dengan viscosity (v) dan
berat fluida (w) sebagai variabel prediktor dan waktu (T) sebagai variabel respon.
Ketiga adalah data mengenai transaksi perdagangan obligasi pemerintah pada
periode 6 April 2009 dengan variabel prediktor adalah time to maturity (TTM) dan
variabel respon adalah yield to maturity (YTM).
Proses penglahan data digunakan software SPSS, SAS dan R dengan
langkah-langkah sebagai berikut :
1. Melakukan identifikasi hubungan non-linear dengan Uji Ramseys RESET,
Uji White dan Uji Terasvirta pada software R. Untuk kasus pertama sintak uji
linearitas adalah sebagai berikut.
>library(lmtest)
> resettest(y.t. ~ t , power=2,
type="regressor", data=kasus1)
> library(tseries)
> t<- kasus1$t
> y.t.<-kasus1$y.t.
> white.test(t, y.t.)
> terasvirta.test(t, y.t.)

3
kasus kedua sintak R adalah sebagai berikut :
> library(lmtest)
> resettest(t ~ v+w , power=2, type="regressor",
data=kasus2)
> library(tseries)
> t <- kasus2$t
> v <-kasus2$v
> w <-kasus2$w
> x.all <- cbind(v,w)
> white.test(x.all, t)

sedangkan untuk kasus ketiga sintak yang digunakan adalah sebagai
berikut,
>library(lmtest)
> resettest(ytm ~ ttm , power=2,
type="regressor", data=kasus3)
> library(tseries)
> y<- kasus3$ytm
> x<-kasus3$ttm
> white.test(x,y)

3. Memodelkan data kasus 1 dengan pemodelan non-linear, kuadratik dan
kubik.
Model non-linear yang diberikan adalah (Ripley, 2002) :
Yt = 硫0 + 硫1 exp(t/慮) +

竜

Identifikasi awal penaksiran parameter 硫00, 硫10, dan 慮0 yaitu :
a. Melakukan regresi kuadratik antara variabel hari (t) sebagai prediktor
dan berat dalam kg (Yt) sebagai respon. Sehingga didapatkan nilai fitted

value yi . Model kuadratik tersebut :
Yt = 硫0* + 硫1*t + 硫2*t2 +

竜

b. Memilih tiga data secara berurutan xo, x1, x2 dari n data yang memiliki



selisih sama ( 隆 ). Sehingga didapatkan y 0 , y1 , dan y 2 .
慮 dengan rumus :
c. Menentukan nilai 0

慮0 =

隆


錚 y  y1 錚
log錚 o
錚y y 錚
錚
錚 1  2 錚

d. Menentukan 硫00 dan 硫10 dengan meregresikan Yt sebagai respon dengan
exp(-t/ 慮 ) sebagai prediktor.
0

4
Makro penaksiran parameter dengan SAS :
title 'Non linear regression';
data kasus1;
input t y;
datalines;
0
185





249
111;
proc model data=kasus1;
y = bo+b1*exp(-t/teta);
fit y start=(bo -67.501 b1 246.022
teta 729.464)/out=resid outall;
run;
proc print kasus1=resid;
run;

Makro penaksiran parameter dengan R :
kasus1<-nls(y.t.~beta0+beta1*(exp(-t/teta)),data=kasus1,
start=list(beta0= -67.51, beta1= 246.022, teta= 729.5), trace=TRUE)

Menghitung eksplorasi data dengan t>250 yaitu dimulai dari t=251 hingga
t=356. Setelah itu membadingkan antar model non-linear, kuadratik maupun
kubik.
4. Melakukan permodelan data studi kasus kedua dengan permodelan regresi
non-linear. Model non-linear adalah :

T=

硫 1v
+竜
w  硫2

Identifikasi awal penaksiran parameter 硫10 dan 硫20 dengan melakukan
pembentukan model baru dari model tersebut, sehingga menjadi :
wT = 硫10 v + 硫20T + ( w  硫20 )竜

Makro SPSS untuk mendapatkan nilai awal
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/ORIGIN
/DEPENDENT wT
/METHOD=ENTER v T .

5
Makro SPSS mendapatkan penaksiran parameter
* NonLinear Regression.
MODEL PROGRAM b1=28.876 b2=2.844 .
COMPUTE PRED_ = b1 * v / (w - b2).
NLR T
/OUTFILE='C:DOCUME~1X2LOCALS~1Tempspss2360SPSSFNLR.TM
P'
/PRED PRED_
/SAVE PRED

Makro penaksiran parameter dengan SAS
data kasus2;
input w v T;
label w='weight' v='viscosity' T='Time';
datalines;
20
14.7
35.6
20
27.5
54.3







100
161.1
45.1
100
298.3
89
100
298.3
86.5
;
proc nlin data=kasus2 method=MARQUARDT;
parms b10=28.9 b20=2.84;
model T=b10*v/(w-b20);
run;

Makro Penaksiran parameter dengan R
> fm <- nls(T~ b1*v/(w-b2), start=list(b1=28.9,
b2=2.84), data=kasus2, trace=TRUE)
> summary(kasus2)

5. Melakukan permodelan data studi kasus keetiga dengan permodelan nonlinear Nelson Siegel (N-S) dan Nelson Siegel Svensson (N-S-S) dengan
tahapan sebgai berikut.
a. Penentuan nilai awal berdasarkan penelitian oleh Amoako (2002),
b0=7.41 b1=-5.41 b2=-5.03 b3=-4.43 t1=0.44 dan t2=1.38.
b. Membagi data training dan testing masing-masing sebanyak 100 dan 32
data sampel dan memodelkan NS dan NSS berdasarkan nilai awal.
c. Menghitung nilai RMSE untuk masing-masing data training dan testing.
d. Memodelkan keseluruhan data dengan model NS dan NSS berdasarkan
nilai awal yang sudah ada.

6
Makro SAS dalam penentuan nilai parameter model N-S
data kasus3;
input X Y;
label X='TTM' Y='YTM';
datalines;
0.0833
0.075
0.1918
0.1056





18.874
0.1275;
proc nlin data=kasus3 method=MARQUARDT;
parms b0=7.41 b1=-5.41 b2=-5.03 t1=0.44;
model Y=b0 + b1 * EXP( - X / t1) + b2 *EXP((X /t1) *
EXP( - X / t1));
run;

Makro SAS dala, penentuan penaksiran parameter model N-S-S
data kasus3;
input X Y;
label X='TTM' Y='YTM';
datalines;
0.0833
0.075
0.1918
0.1056





18.874
0.1275;
proc nlin data=kasus3 method=MARQUARDT;
parms b0=7.41 b1=-5.41 b2=-5.03 b3=-4.43 t1=0.44
t2=1.38;
model Y= b0 + b1*exp(-X/t1)+b2*((X/t1)*exp(X/t1))+
b3*((-X/t2)*exp(-X/t2));
run;

4. Hasil analisa data dan pembahasan
Hasil analisis pengujian deteksi hubungan non-linear dan regresi non-linear
adalah sebagai berikut :

4.1 Pengujian Deteksi Hubungan Non-linear
Pengujian hubungan non-linear dengan uji Ramseys RESET, uji White dan
uji Terasvirta (dengan uji Chi-Square) pada software R yaitu :
Tabel 1 Pengujian Deteksi Hubungan Non-linear
Data Studi Kasus
1
2
3

Ramseys RESET
714.1839
2.2e-16*
7.6107
0,0004*
42.3412
1.544e-09*

Keterangan : (*) nilai P-value

7

White
199.7347
2.2e-16*
11.2577
0,0036*
55.1889
1.037e-12*

Terasvirta
210.1889
2.2e-16*
91.3249
2.2e-16*
53.9386
1.938e-12*
Dari Tabel 1 di atas dapat diketahui bahwa uji Ramseys RESET, Ehite dan
Terasvirta menunjukkan hasil bahwa semua data untuk tiap kasus mengikuti bentuk
model non-linear .

4.2Model Non-linear Studi Kasus Pertama
Pembentukan model non-linear dimulai dengan penaksiran awal parameter
yang akan digunakan. Dari persamaan kuadratik Yt = 183.3  0.454t + 0.001t 2 + 竜
diperoleh tiga data secara berurutan dengan 隆 =3 :

xo=27 , y 0 = 171.51

x1=30 , y1 = 170.26

x2 =33, y 2 .= 169.03

Sehingga didapatkan 慮 = 428.27, 硫00 = 17.97 dan 硫10 = 162.13. Kemudian
00
dilanjutkan dengan pembentukan model non-linear dengan software SPSS, R dan
SAS dengan parameter awal 硫0 = 17.97 dan 硫1 = 162.13.

Software
SPSS
R
SAS

Tabel 2 Model Non-linear pada SPSS, R dan SAS
Model
R2
Yt = 81,84 + 102,40 exp(t/203,19) + 竜
99,8 %
竜
Yt = 81,84 + 102,40 exp(t/203,19) +
Yt = 81,84 + 102,40 exp(t/203,19) + 竜
99,8 %

Dengan Tabel 2 di atas dapat diketahui bahwa model dan koefisien
determinasi (R2) yang diperoleh sama. Dengan estimasi parameter 硫0 = 81,84, 硫1 =
102,4 dan 慮 = 278,783. Parameter hari(t) tersebut terbukti signifikan berpengaruh
0
dalam model karena P-value kurang dari 留 = 0,05. Koefisien determinasi yang
tinggi sebesar 99,8 % menunjukkan bahwa variabel hari mampu menerangkan
penurunan berat badan yang diikuti seorang pasien laki-laki tersebut sebesar 99,8
% yang berarti waktu (hari) sangat berpengaruh terhadap penurunan berat badan.
Bila menggunakan metode regresi polinomial kuadratik maka diperoleh
persamaan seperti pada pembentukan awal parameter, yaitu Yt = 183,3 - 0,4542t +
0,000684t2 + 竜 dengan koefisien determinasi 99,7 %. Dan regresi polynomial kubik
yaitu Yt = 184.5  0,5133t + 0,001281t 2  0,000002t3 dengan koefisien determinansi
99,8 %. Berikut adalah perbandingan fitted value pada model non-linear, kuadratik
dan kubik.
Scat t er pl ot of yhat _ quad, yhat _ cub, yhat _ non v s t
180

Y- Dat a

160

140

120
Variable
y hat_quad
y hat_cub
y hat_non

100

0

50

100

150
t

200

250

Gambar 1 Plot Ekstrapolasi Data

8

300
Dari Gambar 1 di atas disimpulkan bahwa model non-linear adalah pilihan
model terbaik, karena memperlihatkan hubungan hari dan berat badan yang sama
dengan data pembentukan modelnya yaitu semakin besar hari maka berat badan
akan semakin menurun. Hal ini juga didukung oleh nilai koefisien determinansi 99,8
% yang besar.

4.3Model Non-linear Studi Kasus Kedua
Studi kasus kedua tentang the stormer viscometer untuk mendapatkan
model hubungan viscositas(v) dan berat fluida(w) terhadap waktu(T). Pembentukan
identifikasiawal penaksiran parameter melalui model wT = 28,9v + 2,84 + ( w  硫 2 )竜
. Kemudian dilanjutkan dengan pembentukan model non-linear dengan software
SPSS, R dan SAS dengan parameter awal 硫1 = 28,9 dan 硫2 = 2,84.
Tabel 3 Model Non-linear dengan
SPSS, R dan SAS
Software
SPSS

Model
29,4v
T =
+竜
w  2,22

R2
99,17 %

R

T =

29,4v
+竜
w  2,22

-

SAS

T =

29,4v
+竜
w  2,22

99,17 %

Dari Tabel 2 di atas nilai penaksir parameter dan koefisien determinasi
keluaran SPSS, R dan SAS sama, dengan estimasi parameter 硫1=29,4 dan 硫2=2,22
dan R2 = 99.17%. Koefisien determinasi yang tinggi menunjukkan bahwa variabel
viskositas dan berat fluida sangat berpengaruh terhadap waktu.

4.4Model Non-linear Nelson Siegel (N-S) dan Nelson Siegel Svensson
(N-S-S)
Untuk mendapatkan hasil model yang terbaik maka perlu dilakukan validasi
dengan membagi data in sampel dan out sample kemudian menghitung nilai RMSE
dan membandingkannya.
Tabel 4 RMSE in sample dan out sample
Model
N-S
N-S-S

RMSE
In sample
Out sample
0.0029
0.0107
0.0029
0.0108

Dari Tabel 4 di atas dapat diketahui nilai RMSE terkecil adalah pada data in
sample untuk model N-S maupun N-S-S, yaitu 0.0029.
Berikut adalah perbandingan hasil pemodelan dengan menggunakan data
secara keseluruhan.

9
Tabel 5 Perbandingan hasil penaksir parameter model N-S dan N-S-S
Model N-S
SPSS
SAS
R
Model N-S-S
SPSS
SAS
R

b0
0.133

b1
-0.031
-0.0266
b1
4
-0.3485
-

0.0897

b0
0.647
0.4353

-

b2
-0.014
0.0246
b2
-0.087
0.0236
-

b3
b3
0.004
31597
-

t1
2.265
7.0108
t1
0.601
15.294
-

t2
t2
0.545
1904380
-

R2
56.50%
-

R2
55.50%
-

Dari Tabel di atas dapat diketahui bahwa ada perbedaan hasil penaksiran
parameter dengan menggunakan software SPSS dan SAS. Sedangkan software R
tidak mampu menghasilkan output yang diinginkan dengan menggunakan model NS dan N-S-S. Nilai koefisien determinasi model N-S lebih besar daripada model N-SS, yakni 56.5%, sehingga model N-S merupakan model terbaik untuk data yield
curve tanggal 6 April 2009.
Pada model N-S software SPSS mengiterasi model dengan iterasi sebanyak
20, sedangkan SAS sebanyak 23. sedangkan model N-S-S, iterasi SPSS lebih
banyak dibandingkan iterasi yang dilakukan oleh SAS, yaitu 260.
Scat t er pl ot of YTM, Pr ed_ NS, Pr ed_ NSS v s TTM
0.14
0.13

Y- Dat a

0.12
0.11
0.10
0.09

Variable
YTM
Pred_NS
Pred_NSS

0.08
0.07
0

5

10
TTM

15

20

Gambar 2 Grafik Perbandingan Data YTM,
Predicted Model N-S dan N-S-S

Dari Gambar 2 di atas secara visual dapat diketahui hasil prediksi model N-S
dan N-S-S mengikuti pola data YTM.

5. Kesimpulan
Berdasarkan hasil analisis dan pembahasan dapat diambil beberapa
kesimpulan sebagai berikut :
1. Data kesehatan suatu program penurunan berat badan yang diikuti seorang
pasien laki-laki dan data tentang the stormer viscometer lebih mengikuti
bentuk model non-linear dibandingkan model kuadratik maupun kubik.

10

Iterasi
20
23
Iterasi
260
100
-
2. Model terbaik pada studi kasus pertama adalah model non-linear Yt = 81,84
+ 102,40 exp(t/203,19) + 竜 dengan koefisien determinansi 99,8 %.
3. Model non-linear

studi kasus kedua adalah T =

29,4v
+竜
w  2,22

dengan

koefisien determinansi (R2) 99,17 %.
4. Software SPSS dan SAS memberikan hasil berbeda dalam menaksir
parameter model N-S dan N-S-S, sedangkan software R tidak bisa
menghitung taksiran parameter model N-S dan N-S-S

Daftar Pustaka
Gujarati, D.N. (1996). Basic Econometrics. 5th edition, McGraw Hill International,
New York.
White, H. 1989.An additional hidden unit test for neglected nonlinearity in multilayer
feedforward networks. In Proceedings of The International Joint Conference
on Neural Networks, Washington, DC (pp. 451455). San Diego, CA: SOS
Printing.
Terasvirta, T., Lin, C.F.,&Granger, C.W.J.1993.Power of the neural network linearity
test. Journal of Time Series Analysis, 14, 159171.
Drapper, N.,R.,& Smith, H.1996. Applied Regression Analysis, 2nd edition. New
York: John Wiley & Sons. Chapman and Hall.
Venables, W., & Ripley, B. 2002. Modern Applied Statistics with S (4th ed.). New
York: Springer.

11

More Related Content

What's hot (20)

Distribusi sampling
Distribusi samplingDistribusi sampling
Distribusi sampling
Stephanie Isvirastri
STATISTIKA-Pengujian hipotesis
STATISTIKA-Pengujian hipotesisSTATISTIKA-Pengujian hipotesis
STATISTIKA-Pengujian hipotesis
Yousuf Kurniawan
Analisis Regresi Linier Sederhana
Analisis Regresi Linier SederhanaAnalisis Regresi Linier Sederhana
Analisis Regresi Linier Sederhana
Arning Susilawati
Distribusi binomial dan distribusi poisson
Distribusi binomial dan distribusi poissonDistribusi binomial dan distribusi poisson
Distribusi binomial dan distribusi poisson
Suci Agustina
PPT Analisis Regresi.pptx
PPT Analisis Regresi.pptxPPT Analisis Regresi.pptx
PPT Analisis Regresi.pptx
deskaaisyiahanifa
Metode maximum likelihood
Metode maximum likelihoodMetode maximum likelihood
Metode maximum likelihood
ririn12
T2 Hottelling
T2 HottellingT2 Hottelling
T2 Hottelling
Ratnajulie Yatnaningtyas
Statistika-Uji Hipotesis
Statistika-Uji HipotesisStatistika-Uji Hipotesis
Statistika-Uji Hipotesis
Rhandy Prasetyo
Tugas regresi linear dan non linier
Tugas regresi linear dan non linierTugas regresi linear dan non linier
Tugas regresi linear dan non linier
nopiana
linear programming metode simplex
linear programming metode simplexlinear programming metode simplex
linear programming metode simplex
Bambang Kristiono
Bahan kuliah statistika gbs
Bahan kuliah statistika gbsBahan kuliah statistika gbs
Bahan kuliah statistika gbs
Judianto Nugroho
Pendugaan Parameter
Pendugaan ParameterPendugaan Parameter
Pendugaan Parameter
Eko Mardianto
Uji Normalitas dan Homogenitas ppt-
Uji Normalitas dan Homogenitas ppt-Uji Normalitas dan Homogenitas ppt-
Uji Normalitas dan Homogenitas ppt-
Aisyah Turidho
Distribusi hipergeometrik
Distribusi hipergeometrikDistribusi hipergeometrik
Distribusi hipergeometrik
Eman Mendrofa
362112547 kuadratik-dan-kubik
362112547 kuadratik-dan-kubik362112547 kuadratik-dan-kubik
362112547 kuadratik-dan-kubik
Chevi Rahayu
Materi p13 nonpar_satu sampel
Materi p13 nonpar_satu sampelMateri p13 nonpar_satu sampel
Materi p13 nonpar_satu sampel
M. Jainuri, S.Pd., M.Pd
ringkasan uji homogenitas dan normalitas
ringkasan uji homogenitas dan normalitasringkasan uji homogenitas dan normalitas
ringkasan uji homogenitas dan normalitas
Gina Safitri
Uji Run ( Keacakan )
Uji Run ( Keacakan )Uji Run ( Keacakan )
Uji Run ( Keacakan )
Nur Sandy
Uji perbedaan uji z
Uji perbedaan uji z Uji perbedaan uji z
Uji perbedaan uji z
Universitas Negeri Makassar
STATISTIKA-Pengujian hipotesis
STATISTIKA-Pengujian hipotesisSTATISTIKA-Pengujian hipotesis
STATISTIKA-Pengujian hipotesis
Yousuf Kurniawan
Analisis Regresi Linier Sederhana
Analisis Regresi Linier SederhanaAnalisis Regresi Linier Sederhana
Analisis Regresi Linier Sederhana
Arning Susilawati
Distribusi binomial dan distribusi poisson
Distribusi binomial dan distribusi poissonDistribusi binomial dan distribusi poisson
Distribusi binomial dan distribusi poisson
Suci Agustina
PPT Analisis Regresi.pptx
PPT Analisis Regresi.pptxPPT Analisis Regresi.pptx
PPT Analisis Regresi.pptx
deskaaisyiahanifa
Metode maximum likelihood
Metode maximum likelihoodMetode maximum likelihood
Metode maximum likelihood
ririn12
Statistika-Uji Hipotesis
Statistika-Uji HipotesisStatistika-Uji Hipotesis
Statistika-Uji Hipotesis
Rhandy Prasetyo
Tugas regresi linear dan non linier
Tugas regresi linear dan non linierTugas regresi linear dan non linier
Tugas regresi linear dan non linier
nopiana
linear programming metode simplex
linear programming metode simplexlinear programming metode simplex
linear programming metode simplex
Bambang Kristiono
Bahan kuliah statistika gbs
Bahan kuliah statistika gbsBahan kuliah statistika gbs
Bahan kuliah statistika gbs
Judianto Nugroho
Pendugaan Parameter
Pendugaan ParameterPendugaan Parameter
Pendugaan Parameter
Eko Mardianto
Uji Normalitas dan Homogenitas ppt-
Uji Normalitas dan Homogenitas ppt-Uji Normalitas dan Homogenitas ppt-
Uji Normalitas dan Homogenitas ppt-
Aisyah Turidho
Distribusi hipergeometrik
Distribusi hipergeometrikDistribusi hipergeometrik
Distribusi hipergeometrik
Eman Mendrofa
362112547 kuadratik-dan-kubik
362112547 kuadratik-dan-kubik362112547 kuadratik-dan-kubik
362112547 kuadratik-dan-kubik
Chevi Rahayu
ringkasan uji homogenitas dan normalitas
ringkasan uji homogenitas dan normalitasringkasan uji homogenitas dan normalitas
ringkasan uji homogenitas dan normalitas
Gina Safitri
Uji Run ( Keacakan )
Uji Run ( Keacakan )Uji Run ( Keacakan )
Uji Run ( Keacakan )
Nur Sandy

Viewers also liked (20)

Regresi Non Linear
Regresi Non LinearRegresi Non Linear
Regresi Non Linear
Fahrul Usman
Pengertian Korelasi
Pengertian KorelasiPengertian Korelasi
Pengertian Korelasi
guest44990b
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
Model regresi dengan variabel bebas dummy
Model regresi dengan variabel bebas dummy Model regresi dengan variabel bebas dummy
Model regresi dengan variabel bebas dummy
Agung Handoko
MODUL 6 Regresi Linier Sederhana
MODUL 6 Regresi Linier SederhanaMODUL 6 Regresi Linier Sederhana
MODUL 6 Regresi Linier Sederhana
nur cendana sari
Buku SPSS (Statistika)
Buku SPSS (Statistika)Buku SPSS (Statistika)
Buku SPSS (Statistika)
Ester Melinda
4H2012 508 nonLinear Regression
4H2012 508 nonLinear Regression4H2012 508 nonLinear Regression
4H2012 508 nonLinear Regression
A Jorge Garcia
Estimasi parameter
Estimasi parameterEstimasi parameter
Estimasi parameter
Irmaya Yukha
Non linear curve fitting
Non linear curve fitting Non linear curve fitting
Non linear curve fitting
Anumita Mondal
Korelasi product-moment
Korelasi product-momentKorelasi product-moment
Korelasi product-moment
Primadina Cahyati
Modul belajar-spss-1
Modul belajar-spss-1Modul belajar-spss-1
Modul belajar-spss-1
in_ndah
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSSPanduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Muliadin Forester
11. regresi linier sederhana
11. regresi linier sederhana11. regresi linier sederhana
11. regresi linier sederhana
Rivandi Archmage
Regresi dummy
Regresi dummyRegresi dummy
Regresi dummy
deni123456789
Makalah regresi dan korelasi
Makalah regresi dan korelasiMakalah regresi dan korelasi
Makalah regresi dan korelasi
Muhammad Asri
Materi Basis Data - Anomali dan Normalisasi
Materi Basis Data - Anomali dan NormalisasiMateri Basis Data - Anomali dan Normalisasi
Materi Basis Data - Anomali dan Normalisasi
Derina Ellya R
HAM dan Pelaksanaannya Di Indonesia
HAM dan Pelaksanaannya Di IndonesiaHAM dan Pelaksanaannya Di Indonesia
HAM dan Pelaksanaannya Di Indonesia
PT Lion Air
仗仂亠从 QR 弌丐弌
仗仂亠从 QR 弌丐弌仗仂亠从 QR 弌丐弌
仗仂亠从 QR 弌丐弌
MM2B
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
IOSR Journals
Regresi Non Linear
Regresi Non LinearRegresi Non Linear
Regresi Non Linear
Fahrul Usman
Pengertian Korelasi
Pengertian KorelasiPengertian Korelasi
Pengertian Korelasi
guest44990b
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
Izhan Nassuha
Model regresi dengan variabel bebas dummy
Model regresi dengan variabel bebas dummy Model regresi dengan variabel bebas dummy
Model regresi dengan variabel bebas dummy
Agung Handoko
MODUL 6 Regresi Linier Sederhana
MODUL 6 Regresi Linier SederhanaMODUL 6 Regresi Linier Sederhana
MODUL 6 Regresi Linier Sederhana
nur cendana sari
Buku SPSS (Statistika)
Buku SPSS (Statistika)Buku SPSS (Statistika)
Buku SPSS (Statistika)
Ester Melinda
4H2012 508 nonLinear Regression
4H2012 508 nonLinear Regression4H2012 508 nonLinear Regression
4H2012 508 nonLinear Regression
A Jorge Garcia
Estimasi parameter
Estimasi parameterEstimasi parameter
Estimasi parameter
Irmaya Yukha
Non linear curve fitting
Non linear curve fitting Non linear curve fitting
Non linear curve fitting
Anumita Mondal
Modul belajar-spss-1
Modul belajar-spss-1Modul belajar-spss-1
Modul belajar-spss-1
in_ndah
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSSPanduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Panduan Lengkap Analisis Statistika dengan Aplikasi SPSS
Muliadin Forester
11. regresi linier sederhana
11. regresi linier sederhana11. regresi linier sederhana
11. regresi linier sederhana
Rivandi Archmage
Makalah regresi dan korelasi
Makalah regresi dan korelasiMakalah regresi dan korelasi
Makalah regresi dan korelasi
Muhammad Asri
Materi Basis Data - Anomali dan Normalisasi
Materi Basis Data - Anomali dan NormalisasiMateri Basis Data - Anomali dan Normalisasi
Materi Basis Data - Anomali dan Normalisasi
Derina Ellya R
HAM dan Pelaksanaannya Di Indonesia
HAM dan Pelaksanaannya Di IndonesiaHAM dan Pelaksanaannya Di Indonesia
HAM dan Pelaksanaannya Di Indonesia
PT Lion Air
仗仂亠从 QR 弌丐弌
仗仂亠从 QR 弌丐弌仗仂亠从 QR 弌丐弌
仗仂亠从 QR 弌丐弌
MM2B
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
A Bootstrap Approach to Error-Reduction of Nonlinear Regression Parameters Es...
IOSR Journals

Similar to Model regresi-non-linear (20)

MODEL_REGRESI_NON_LINEAR.doc
MODEL_REGRESI_NON_LINEAR.docMODEL_REGRESI_NON_LINEAR.doc
MODEL_REGRESI_NON_LINEAR.doc
AhmadFauzan146931
Mengatasi multikolonieritas
Mengatasi multikolonieritasMengatasi multikolonieritas
Mengatasi multikolonieritas
Eka Siskawati
Noeryanti 15454
Noeryanti 15454Noeryanti 15454
Noeryanti 15454
Zulyy Astutik
11 Sem -materi.pdf
11 Sem -materi.pdf11 Sem -materi.pdf
11 Sem -materi.pdf
NovanAdiNugroho2
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi NonlinierModul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Arif Rahman
Bab 1 Pengukuran dan Besaran Fisika pptx.pptx
Bab 1 Pengukuran dan Besaran Fisika pptx.pptxBab 1 Pengukuran dan Besaran Fisika pptx.pptx
Bab 1 Pengukuran dan Besaran Fisika pptx.pptx
IdaOktovinaYaung
Analisis regresi(materi klh)
Analisis regresi(materi klh)Analisis regresi(materi klh)
Analisis regresi(materi klh)
Panangian Mahadi
vdocuments.net_uji-normalitas-dan-validitas.ppt
vdocuments.net_uji-normalitas-dan-validitas.pptvdocuments.net_uji-normalitas-dan-validitas.ppt
vdocuments.net_uji-normalitas-dan-validitas.ppt
AnggaPratama111616
Makalah model regresi dengan variabel terikat dummy
Makalah model regresi dengan variabel terikat dummyMakalah model regresi dengan variabel terikat dummy
Makalah model regresi dengan variabel terikat dummy
Agung Handoko
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptxPPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
TiaraTuzzahra
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
AyuDinaAdniaty
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
ssuserac1ac0
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptxBAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
azizahsiti6
Regresi linear Nonlinear Statistic .pptx
Regresi linear Nonlinear Statistic  .pptxRegresi linear Nonlinear Statistic  .pptx
Regresi linear Nonlinear Statistic .pptx
EkaFaisal
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRIMODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
dedysetyooetomo1
ANALISIS FAKTOR
ANALISIS FAKTORANALISIS FAKTOR
ANALISIS FAKTOR
Farida Dadari
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptxBAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
musallah90spd
001 konsep hitung_kuadrat_terkecil
001 konsep hitung_kuadrat_terkecil001 konsep hitung_kuadrat_terkecil
001 konsep hitung_kuadrat_terkecil
leonardo onar
Pengertian distribusi lognormal
Pengertian distribusi lognormalPengertian distribusi lognormal
Pengertian distribusi lognormal
Nurul Lailyah
MODEL_REGRESI_NON_LINEAR.doc
MODEL_REGRESI_NON_LINEAR.docMODEL_REGRESI_NON_LINEAR.doc
MODEL_REGRESI_NON_LINEAR.doc
AhmadFauzan146931
Mengatasi multikolonieritas
Mengatasi multikolonieritasMengatasi multikolonieritas
Mengatasi multikolonieritas
Eka Siskawati
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi NonlinierModul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Modul Ajar Statistika Inferensia ke-10: Analisis Regresi Nonlinier
Arif Rahman
Bab 1 Pengukuran dan Besaran Fisika pptx.pptx
Bab 1 Pengukuran dan Besaran Fisika pptx.pptxBab 1 Pengukuran dan Besaran Fisika pptx.pptx
Bab 1 Pengukuran dan Besaran Fisika pptx.pptx
IdaOktovinaYaung
Analisis regresi(materi klh)
Analisis regresi(materi klh)Analisis regresi(materi klh)
Analisis regresi(materi klh)
Panangian Mahadi
vdocuments.net_uji-normalitas-dan-validitas.ppt
vdocuments.net_uji-normalitas-dan-validitas.pptvdocuments.net_uji-normalitas-dan-validitas.ppt
vdocuments.net_uji-normalitas-dan-validitas.ppt
AnggaPratama111616
Makalah model regresi dengan variabel terikat dummy
Makalah model regresi dengan variabel terikat dummyMakalah model regresi dengan variabel terikat dummy
Makalah model regresi dengan variabel terikat dummy
Agung Handoko
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptxPPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
PPT KELOMPOK 3 ANALISIS REGRESI 234.pptx
TiaraTuzzahra
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
AyuDinaAdniaty
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
02. PPT MTK (Wajib) XII - www.ilmuguru.org.pptx
ssuserac1ac0
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptxBAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
azizahsiti6
Regresi linear Nonlinear Statistic .pptx
Regresi linear Nonlinear Statistic  .pptxRegresi linear Nonlinear Statistic  .pptx
Regresi linear Nonlinear Statistic .pptx
EkaFaisal
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRIMODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
MODEL SEM UNTUK PENGAMBILAN KEPUTUSAN PADA KEILMUAN TEKNIK INDUSTRI
dedysetyooetomo1
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptxBAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
BAB 2 UKURAN PEMUSATAN DAN PENYEBARAN DATA BERKELOMPOK.pptx
musallah90spd
001 konsep hitung_kuadrat_terkecil
001 konsep hitung_kuadrat_terkecil001 konsep hitung_kuadrat_terkecil
001 konsep hitung_kuadrat_terkecil
leonardo onar
Pengertian distribusi lognormal
Pengertian distribusi lognormalPengertian distribusi lognormal
Pengertian distribusi lognormal
Nurul Lailyah

Model regresi-non-linear

  • 1. MODEL REGRESI NON LINEAR DAN UJI DETEKSI HUBUNGAN NONLINEAR Azwar Rhosyied1 1305 100 054 Saudi Imam Besari2 1306 100 046 Arisman Wijaya3 1306 100 042 1 rhosyied54@gmail.com, 2e_saudi@ymail.com , 3arin_mathlover@yahoo.co.id Abstract In our living, there are many data doesnt has linear pattern. So it is fit to using non linear model to solving it. The purpose of this research is applying non linear regression model for three cases using SPSS, SAS and R software. The best model for the first case is adalah Yt = 81,84 + 102,40 exp(t/203,19) + 竜 . 29,4v + 竜 is the model for the second case. All software has the same w 2,22 result in estimating parameter for this model. For the third case, we use the newest model, Nelson Siegel (N-S) and Nelson Siegel Svensson (N-S-S) model with yield curve data. The result for each model is YTM = 0.133 - 0.031* exp( - TTM / 2.265) 0.014*exp((TTM /2.265) * exp( - TTM / 2.265)) expecially for N-S model, YTM = 0.647 + 0.4*exp( -TTM / 0.601) 0.087* ((TTM / 0.601) * exp(TTM /0.601)) + 0.004 * (( -TTM / 0.545) * exp( - TTM / 0.545)) expecially for N-S-S model. T = Keywords : Nelson Siegel, stormer viscometer, model non linear, yield curve 1. Pendahuluan Peristiwa di sekitar sering merupakan kejadian yang dapat dimodelkan dengan persamaan regresi. Berdasarkan hubungan kelinearan antar parameter dalam persamaan regresi, model regresi mempunyai dua bentuk hubungan kelinearan yaitu regresi linear dan regresi nonlinear. Seringkali kejadian dalam kehidupan sehari-hari lebih sering merupakan pola model regresi nonlinear. Untuk itu dalam makalah ini akan dibahas mengenai model regresi nonlinear. Beberapa penelitian yang menggunakan regresi non-linear diantaranya oleh Miconnet, Geeraerd, Impe, Roso, dan Cornu (2005) yaitu memodelkan produksi padi dengan least square non-linear dalam permodelan kurva pertumbuhan dalam produksi. Dalam makalah ini sebagai studi kasus adalah data tentang program penurunan berat badan yang diikuti oleh seorang pasien laki-laki. Data kedua adalah data the stromer viscometer dan data tentang yield curve. Proses untuk mendapatkan model nonlinear pada penelitian ini digunakan software SPSS, SAS dan R, sehingga dapat membandingkan hasil output dari ketiga software tersebut. 2. Tinjauan Pustaka Pada bagian ini dibahas mengenai metode dan beberapa teori yang mendukung untuk pengerjaan analisis hubungan non-linear. 1
  • 2. 2.1 Uji Deteksi Non-linear dengan Uji Ramseys RESET, Uji White dan Uji Terasvirta Uji Ramseys RESET, Uji White dan Uji Terasvirta untuk mendeteksi apakah suatu model mengikuti pola linear atau non-linear tersedia dalam software R. Statistik uji Ramseys RESET adalah (Lihat pembahasan lengkap di Gujarati, 1996). F= 2 2 (Rnew Rold ) / p 2 (1 Rnew ) / (n k) (1) dengan p jumlah variabel independen baru, k jumlah parameter pada model baru, n jumlah data. Kesimpulanya Ho ditolak bila F > F(留,p,n-k) Uji White adalah uji deteksi non-linearitas yang dikembangkan dari model neural network yang ditemukan oleh White (1989). Uji white menggunakan statistik 2 dan F. Prosedur yang digunakan untuk 2 adalah : a. Meregresikan yt pada 1, x1, x2, , xp dan menghitung nilai-nilai residual ut . b. Meregresikan u t pada 1, x1, x2, , xp dan m prediktor tambahan dan kemudian hitung koefisien determinasi dari regresi R2. Dalam uji ini, m ' prediktor tambahan ini adalah nilai-nilai dari hasil dari (粒 j wt ) hasil dari suatu transformasi komponen utama. c. Hitung 2 =nR2, dimana n adalah jumlah pengamatan yang digunakan. 2 Dengan hipotesis linearitas, 2 mendekati distribusi ( m ) atau tolak Ho jika P-value < 留. Uji Terasvirta adalah uji deteksi non-linearitas yang juga dikembangkan dari model neural network dan termasuk dalam kelompok uji tipe Lagrange Multiplier (LM) yang dikembangkan dengan ekspansi Taylor (Terasvirta, 1993). Pengambilan kesimpulan ketiga uji tersebut dapat dilihat melalui nilai P-value, yaitu tolak Ho jika kurang dari 留 . 2.2 Model Regresi Non-linear Parametrik Berdasarkan kelinearan antar parameter pada model regresi, maka suatu model regresi dapat diklasifikasikan menjadi dua macam yaitu model linear dan non-linear. Model regresi dikatakan linear jika dapat dinyatakan dalam model : y = 硫0 + 硫1 x1+硫2 x2 + 硫3 x3 + ... + 硫k xk + 竜 (2) Apabila model tidak dapat dinyatakan dalam model tersebut maka model yang diperoleh adalah model non-linear. Secara umum model regresi non-linear parametrik dengan sebagai variabel respon pada replikasi sebanyak dan setiap nilai merupakan variabel independen.dapat dinyatakan dalam persamaan (Ripley, 2002) : (3) Yij = f ( xi , 慮) +竜ij dengan f adalah fungsi regresi dengan parameter 慮 yang harus diduga dan adalah galat dengan sifat N(0,留). Salah satu metode pendugaan parameter dalam sistem non-linear adalah jalan tengah Marquardt (Marquadts compromise). Metode Marquardt merupakan kompromi atau jalan tengah antara metode linearisasi atau deret Taylor dengan metode steepest descent (Draper & Smith, 1996). 2
  • 3. 2.3 Model Nelson Siegel (N-S) dan Nelson Siegel Svensson (N-S-S) Tahun 1987, Nelson dan Siegel menunjukkan yield curve dari model yang terletak pada bentuk range yang sama. Model N-S dan N-S-S merupakan pendekatan untuk mendapatkan model yield curve. Model N-S dinyatakan dalam persamaan sebagai berikut 錚錚 m 錚 錚 m錚 錚 m 錚駈9 粒 ( m ) = 硫 0 + 硫1 exp錚 錚 + 硫 2 exp 錚錚 錚 exp錚 錚件 (4) 錚 錚 錚 錚醐 錚逸 錚 dengan 粒 ( m ) adalah nilai yield to maturity (YTM yang )merupakan yield dengan pendekatan forward rate pada maturitas m atau time to maturity (TTM). Sedangkan parameter merupaka konstanta waktu dari belokan kurva dan parameter 硫 0 menunjukkan nilai asimtotik atau konstanta, serta 硫 dan 硫2 merupakan 1 parameter yang menunjukkan arah lengkungan dari kurva. Sedangkan model N-S-S berikut merupakan pengembangan dari model N-S dengan penambahan parameter 硫 dan 3 yang digunakan untuk menambah 3 fleksibilitas kurva (Amoako et al, 2005). 錚錚 m 錚 錚錚 m 錚 錚 m錚 錚 m 錚駈9 錚 m 錚駈9 粒 ( m ) = 硫 0 + 硫1 exp錚 錚 + 硫 2 exp 錚錚 錚 exp錚 錚件 + 硫 3 錚錚 錚 exp錚 錚件 (5) 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 錚 1錚 錚 1 錚醐 錚 2 錚醐 錚逸 1 錚 錚逸 2 錚 3. Metodologi Penelitian Dalam penelitian ini digunakan tiga jenis data. Masalah pertama adalah data mengenai program penurunan berat badan yang diikuti oleh pasien laki-laki dengan variabel prediktor adalah hari (t) dan berat badan dalam kg (yt) sebagai variabel respon. Data kedua mengenai The Stormer Viscometer dengan viscosity (v) dan berat fluida (w) sebagai variabel prediktor dan waktu (T) sebagai variabel respon. Ketiga adalah data mengenai transaksi perdagangan obligasi pemerintah pada periode 6 April 2009 dengan variabel prediktor adalah time to maturity (TTM) dan variabel respon adalah yield to maturity (YTM). Proses penglahan data digunakan software SPSS, SAS dan R dengan langkah-langkah sebagai berikut : 1. Melakukan identifikasi hubungan non-linear dengan Uji Ramseys RESET, Uji White dan Uji Terasvirta pada software R. Untuk kasus pertama sintak uji linearitas adalah sebagai berikut. >library(lmtest) > resettest(y.t. ~ t , power=2, type="regressor", data=kasus1) > library(tseries) > t<- kasus1$t > y.t.<-kasus1$y.t. > white.test(t, y.t.) > terasvirta.test(t, y.t.) 3
  • 4. kasus kedua sintak R adalah sebagai berikut : > library(lmtest) > resettest(t ~ v+w , power=2, type="regressor", data=kasus2) > library(tseries) > t <- kasus2$t > v <-kasus2$v > w <-kasus2$w > x.all <- cbind(v,w) > white.test(x.all, t) sedangkan untuk kasus ketiga sintak yang digunakan adalah sebagai berikut, >library(lmtest) > resettest(ytm ~ ttm , power=2, type="regressor", data=kasus3) > library(tseries) > y<- kasus3$ytm > x<-kasus3$ttm > white.test(x,y) 3. Memodelkan data kasus 1 dengan pemodelan non-linear, kuadratik dan kubik. Model non-linear yang diberikan adalah (Ripley, 2002) : Yt = 硫0 + 硫1 exp(t/慮) + 竜 Identifikasi awal penaksiran parameter 硫00, 硫10, dan 慮0 yaitu : a. Melakukan regresi kuadratik antara variabel hari (t) sebagai prediktor dan berat dalam kg (Yt) sebagai respon. Sehingga didapatkan nilai fitted value yi . Model kuadratik tersebut : Yt = 硫0* + 硫1*t + 硫2*t2 + 竜 b. Memilih tiga data secara berurutan xo, x1, x2 dari n data yang memiliki selisih sama ( 隆 ). Sehingga didapatkan y 0 , y1 , dan y 2 . 慮 dengan rumus : c. Menentukan nilai 0 慮0 = 隆 錚 y y1 錚 log錚 o 錚y y 錚 錚 錚 1 2 錚 d. Menentukan 硫00 dan 硫10 dengan meregresikan Yt sebagai respon dengan exp(-t/ 慮 ) sebagai prediktor. 0 4
  • 5. Makro penaksiran parameter dengan SAS : title 'Non linear regression'; data kasus1; input t y; datalines; 0 185 249 111; proc model data=kasus1; y = bo+b1*exp(-t/teta); fit y start=(bo -67.501 b1 246.022 teta 729.464)/out=resid outall; run; proc print kasus1=resid; run; Makro penaksiran parameter dengan R : kasus1<-nls(y.t.~beta0+beta1*(exp(-t/teta)),data=kasus1, start=list(beta0= -67.51, beta1= 246.022, teta= 729.5), trace=TRUE) Menghitung eksplorasi data dengan t>250 yaitu dimulai dari t=251 hingga t=356. Setelah itu membadingkan antar model non-linear, kuadratik maupun kubik. 4. Melakukan permodelan data studi kasus kedua dengan permodelan regresi non-linear. Model non-linear adalah : T= 硫 1v +竜 w 硫2 Identifikasi awal penaksiran parameter 硫10 dan 硫20 dengan melakukan pembentukan model baru dari model tersebut, sehingga menjadi : wT = 硫10 v + 硫20T + ( w 硫20 )竜 Makro SPSS untuk mendapatkan nilai awal REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /ORIGIN /DEPENDENT wT /METHOD=ENTER v T . 5
  • 6. Makro SPSS mendapatkan penaksiran parameter * NonLinear Regression. MODEL PROGRAM b1=28.876 b2=2.844 . COMPUTE PRED_ = b1 * v / (w - b2). NLR T /OUTFILE='C:DOCUME~1X2LOCALS~1Tempspss2360SPSSFNLR.TM P' /PRED PRED_ /SAVE PRED Makro penaksiran parameter dengan SAS data kasus2; input w v T; label w='weight' v='viscosity' T='Time'; datalines; 20 14.7 35.6 20 27.5 54.3 100 161.1 45.1 100 298.3 89 100 298.3 86.5 ; proc nlin data=kasus2 method=MARQUARDT; parms b10=28.9 b20=2.84; model T=b10*v/(w-b20); run; Makro Penaksiran parameter dengan R > fm <- nls(T~ b1*v/(w-b2), start=list(b1=28.9, b2=2.84), data=kasus2, trace=TRUE) > summary(kasus2) 5. Melakukan permodelan data studi kasus keetiga dengan permodelan nonlinear Nelson Siegel (N-S) dan Nelson Siegel Svensson (N-S-S) dengan tahapan sebgai berikut. a. Penentuan nilai awal berdasarkan penelitian oleh Amoako (2002), b0=7.41 b1=-5.41 b2=-5.03 b3=-4.43 t1=0.44 dan t2=1.38. b. Membagi data training dan testing masing-masing sebanyak 100 dan 32 data sampel dan memodelkan NS dan NSS berdasarkan nilai awal. c. Menghitung nilai RMSE untuk masing-masing data training dan testing. d. Memodelkan keseluruhan data dengan model NS dan NSS berdasarkan nilai awal yang sudah ada. 6
  • 7. Makro SAS dalam penentuan nilai parameter model N-S data kasus3; input X Y; label X='TTM' Y='YTM'; datalines; 0.0833 0.075 0.1918 0.1056 18.874 0.1275; proc nlin data=kasus3 method=MARQUARDT; parms b0=7.41 b1=-5.41 b2=-5.03 t1=0.44; model Y=b0 + b1 * EXP( - X / t1) + b2 *EXP((X /t1) * EXP( - X / t1)); run; Makro SAS dala, penentuan penaksiran parameter model N-S-S data kasus3; input X Y; label X='TTM' Y='YTM'; datalines; 0.0833 0.075 0.1918 0.1056 18.874 0.1275; proc nlin data=kasus3 method=MARQUARDT; parms b0=7.41 b1=-5.41 b2=-5.03 b3=-4.43 t1=0.44 t2=1.38; model Y= b0 + b1*exp(-X/t1)+b2*((X/t1)*exp(X/t1))+ b3*((-X/t2)*exp(-X/t2)); run; 4. Hasil analisa data dan pembahasan Hasil analisis pengujian deteksi hubungan non-linear dan regresi non-linear adalah sebagai berikut : 4.1 Pengujian Deteksi Hubungan Non-linear Pengujian hubungan non-linear dengan uji Ramseys RESET, uji White dan uji Terasvirta (dengan uji Chi-Square) pada software R yaitu : Tabel 1 Pengujian Deteksi Hubungan Non-linear Data Studi Kasus 1 2 3 Ramseys RESET 714.1839 2.2e-16* 7.6107 0,0004* 42.3412 1.544e-09* Keterangan : (*) nilai P-value 7 White 199.7347 2.2e-16* 11.2577 0,0036* 55.1889 1.037e-12* Terasvirta 210.1889 2.2e-16* 91.3249 2.2e-16* 53.9386 1.938e-12*
  • 8. Dari Tabel 1 di atas dapat diketahui bahwa uji Ramseys RESET, Ehite dan Terasvirta menunjukkan hasil bahwa semua data untuk tiap kasus mengikuti bentuk model non-linear . 4.2Model Non-linear Studi Kasus Pertama Pembentukan model non-linear dimulai dengan penaksiran awal parameter yang akan digunakan. Dari persamaan kuadratik Yt = 183.3 0.454t + 0.001t 2 + 竜 diperoleh tiga data secara berurutan dengan 隆 =3 : xo=27 , y 0 = 171.51 x1=30 , y1 = 170.26 x2 =33, y 2 .= 169.03 Sehingga didapatkan 慮 = 428.27, 硫00 = 17.97 dan 硫10 = 162.13. Kemudian 00 dilanjutkan dengan pembentukan model non-linear dengan software SPSS, R dan SAS dengan parameter awal 硫0 = 17.97 dan 硫1 = 162.13. Software SPSS R SAS Tabel 2 Model Non-linear pada SPSS, R dan SAS Model R2 Yt = 81,84 + 102,40 exp(t/203,19) + 竜 99,8 % 竜 Yt = 81,84 + 102,40 exp(t/203,19) + Yt = 81,84 + 102,40 exp(t/203,19) + 竜 99,8 % Dengan Tabel 2 di atas dapat diketahui bahwa model dan koefisien determinasi (R2) yang diperoleh sama. Dengan estimasi parameter 硫0 = 81,84, 硫1 = 102,4 dan 慮 = 278,783. Parameter hari(t) tersebut terbukti signifikan berpengaruh 0 dalam model karena P-value kurang dari 留 = 0,05. Koefisien determinasi yang tinggi sebesar 99,8 % menunjukkan bahwa variabel hari mampu menerangkan penurunan berat badan yang diikuti seorang pasien laki-laki tersebut sebesar 99,8 % yang berarti waktu (hari) sangat berpengaruh terhadap penurunan berat badan. Bila menggunakan metode regresi polinomial kuadratik maka diperoleh persamaan seperti pada pembentukan awal parameter, yaitu Yt = 183,3 - 0,4542t + 0,000684t2 + 竜 dengan koefisien determinasi 99,7 %. Dan regresi polynomial kubik yaitu Yt = 184.5 0,5133t + 0,001281t 2 0,000002t3 dengan koefisien determinansi 99,8 %. Berikut adalah perbandingan fitted value pada model non-linear, kuadratik dan kubik. Scat t er pl ot of yhat _ quad, yhat _ cub, yhat _ non v s t 180 Y- Dat a 160 140 120 Variable y hat_quad y hat_cub y hat_non 100 0 50 100 150 t 200 250 Gambar 1 Plot Ekstrapolasi Data 8 300
  • 9. Dari Gambar 1 di atas disimpulkan bahwa model non-linear adalah pilihan model terbaik, karena memperlihatkan hubungan hari dan berat badan yang sama dengan data pembentukan modelnya yaitu semakin besar hari maka berat badan akan semakin menurun. Hal ini juga didukung oleh nilai koefisien determinansi 99,8 % yang besar. 4.3Model Non-linear Studi Kasus Kedua Studi kasus kedua tentang the stormer viscometer untuk mendapatkan model hubungan viscositas(v) dan berat fluida(w) terhadap waktu(T). Pembentukan identifikasiawal penaksiran parameter melalui model wT = 28,9v + 2,84 + ( w 硫 2 )竜 . Kemudian dilanjutkan dengan pembentukan model non-linear dengan software SPSS, R dan SAS dengan parameter awal 硫1 = 28,9 dan 硫2 = 2,84. Tabel 3 Model Non-linear dengan SPSS, R dan SAS Software SPSS Model 29,4v T = +竜 w 2,22 R2 99,17 % R T = 29,4v +竜 w 2,22 - SAS T = 29,4v +竜 w 2,22 99,17 % Dari Tabel 2 di atas nilai penaksir parameter dan koefisien determinasi keluaran SPSS, R dan SAS sama, dengan estimasi parameter 硫1=29,4 dan 硫2=2,22 dan R2 = 99.17%. Koefisien determinasi yang tinggi menunjukkan bahwa variabel viskositas dan berat fluida sangat berpengaruh terhadap waktu. 4.4Model Non-linear Nelson Siegel (N-S) dan Nelson Siegel Svensson (N-S-S) Untuk mendapatkan hasil model yang terbaik maka perlu dilakukan validasi dengan membagi data in sampel dan out sample kemudian menghitung nilai RMSE dan membandingkannya. Tabel 4 RMSE in sample dan out sample Model N-S N-S-S RMSE In sample Out sample 0.0029 0.0107 0.0029 0.0108 Dari Tabel 4 di atas dapat diketahui nilai RMSE terkecil adalah pada data in sample untuk model N-S maupun N-S-S, yaitu 0.0029. Berikut adalah perbandingan hasil pemodelan dengan menggunakan data secara keseluruhan. 9
  • 10. Tabel 5 Perbandingan hasil penaksir parameter model N-S dan N-S-S Model N-S SPSS SAS R Model N-S-S SPSS SAS R b0 0.133 b1 -0.031 -0.0266 b1 4 -0.3485 - 0.0897 b0 0.647 0.4353 - b2 -0.014 0.0246 b2 -0.087 0.0236 - b3 b3 0.004 31597 - t1 2.265 7.0108 t1 0.601 15.294 - t2 t2 0.545 1904380 - R2 56.50% - R2 55.50% - Dari Tabel di atas dapat diketahui bahwa ada perbedaan hasil penaksiran parameter dengan menggunakan software SPSS dan SAS. Sedangkan software R tidak mampu menghasilkan output yang diinginkan dengan menggunakan model NS dan N-S-S. Nilai koefisien determinasi model N-S lebih besar daripada model N-SS, yakni 56.5%, sehingga model N-S merupakan model terbaik untuk data yield curve tanggal 6 April 2009. Pada model N-S software SPSS mengiterasi model dengan iterasi sebanyak 20, sedangkan SAS sebanyak 23. sedangkan model N-S-S, iterasi SPSS lebih banyak dibandingkan iterasi yang dilakukan oleh SAS, yaitu 260. Scat t er pl ot of YTM, Pr ed_ NS, Pr ed_ NSS v s TTM 0.14 0.13 Y- Dat a 0.12 0.11 0.10 0.09 Variable YTM Pred_NS Pred_NSS 0.08 0.07 0 5 10 TTM 15 20 Gambar 2 Grafik Perbandingan Data YTM, Predicted Model N-S dan N-S-S Dari Gambar 2 di atas secara visual dapat diketahui hasil prediksi model N-S dan N-S-S mengikuti pola data YTM. 5. Kesimpulan Berdasarkan hasil analisis dan pembahasan dapat diambil beberapa kesimpulan sebagai berikut : 1. Data kesehatan suatu program penurunan berat badan yang diikuti seorang pasien laki-laki dan data tentang the stormer viscometer lebih mengikuti bentuk model non-linear dibandingkan model kuadratik maupun kubik. 10 Iterasi 20 23 Iterasi 260 100 -
  • 11. 2. Model terbaik pada studi kasus pertama adalah model non-linear Yt = 81,84 + 102,40 exp(t/203,19) + 竜 dengan koefisien determinansi 99,8 %. 3. Model non-linear studi kasus kedua adalah T = 29,4v +竜 w 2,22 dengan koefisien determinansi (R2) 99,17 %. 4. Software SPSS dan SAS memberikan hasil berbeda dalam menaksir parameter model N-S dan N-S-S, sedangkan software R tidak bisa menghitung taksiran parameter model N-S dan N-S-S Daftar Pustaka Gujarati, D.N. (1996). Basic Econometrics. 5th edition, McGraw Hill International, New York. White, H. 1989.An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks. In Proceedings of The International Joint Conference on Neural Networks, Washington, DC (pp. 451455). San Diego, CA: SOS Printing. Terasvirta, T., Lin, C.F.,&Granger, C.W.J.1993.Power of the neural network linearity test. Journal of Time Series Analysis, 14, 159171. Drapper, N.,R.,& Smith, H.1996. Applied Regression Analysis, 2nd edition. New York: John Wiley & Sons. Chapman and Hall. Venables, W., & Ripley, B. 2002. Modern Applied Statistics with S (4th ed.). New York: Springer. 11