34. chainer付属nin.pyのforward計算
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv3(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = self.conv4(F.dropout(h, train=self.train))
y = F.reshape(F.average_pooling_2d(h, 6), (x.data.shape[0], 1000))
35. chainer付属nin.pyのforward計算
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv2(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv3(h))
h = F.max_pooling_2d(h, 3, stride=2)
h = self.conv4(F.dropout(h, train=self.train))
y = F.reshape(F.average_pooling_2d(h, 6), (x.data.shape[0], 1000))
畳み込み
プーリング
↓
畳み込み
プーリング
↓
畳み込み
プーリング
↓
畳み込み
Global Average
Pooling
39. モデルの改善(forward計算)
h = F.relu(self.conv1(x))
h = F.max_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv2(h))
h = F.average_pooling_2d(h, 3, stride=2)
h = F.relu(self.conv3(h))
h = F.average_pooling_2d(h, 3, stride=2)
h = F.relu(F.dropout(self.conv4(h), ratio=0.5,train=train))
h = F.average_pooling_2d(h, 3, stride=2)
y = F.reshape(F.average_pooling_2d(h, 6), (x.data.shape[0],48))
畳み込み
プーリング
↓
畳み込み
プーリング
↓
畳み込み
プーリング
↓
畳み込み
プーリング
↓
Global Average
Pooling