狠狠撸

狠狠撸Share a Scribd company logo
Cross-Channel Impacts of Online Advertising,
Salesforce and Product Line Strategies in O2O
Retailing Environments
Yunkun Zhao*, Khim Yong Goh* and Liwen Hou**
* National University of Singapore, ** Shanghai Jiaotong University
Contact Author: mozartkun@gmail.com
Motivation
Brand Ad
Product Line
Product Ad
Research Objectives and Hypotheses
? Evaluating the impacts of salesman attributes on effectiveness of
advertising strategies
? Evaluating the impacts of product line length on effectiveness of
advertising strategies
H1A: Brand Ad + Salesman Train
+
Brand Ad + Salesman Tenure
+
H1B: Product Ad + Salesman Train
+
Product Ad + Salesman Tenure
+
H2A: Brand Ad + Length Across
Different Brand -
H2B: Product Ad + Length Across
Different Brand -
H2C: Brand Ad + Length Within
Same Brand +
H2D: Product Ad + Length Within
Same Brand -
Data Background
Data provided by a multi-brand multi-product O2O automobile manufacturer in China,
selling 3 brands, 35 models in 1,980 dealership stores throughout China. We have (1)
Purchase history, (2) Offline visit records, (3) Automobile information, and (4) Salesman
information
Individual Level Analysis
Aggregate Level Analysis
Sample, Dependent (Y) and Independent Variables (X)
Sample: (1) Customer-product-day level data from Jan, 2014 till Jun, 2016;
(2) 551,056 observations from 524,991 customers
Choiceijt Y1: Whether customer i choose to buy product j on day t (=1 yes, =0 no)
BrandAdijt X1: Whether customer i is lead by brand-oriented advertising for product j
into offline official store to visit at day t
ProductAdijt X2: Whether customer i is lead by product-oriented advertising for
product j into offline official store to visit at day t
SpBrandTenureit X3: The number of months the salesperson who serves customer i at day t
has been responsible for the car product j
SpPassTrainit X4: Whether the salesperson who serves customer i at day t passes sales
training program
CarLineDiffBrandit X5: The number of same-line different-brand car models of the car j that
the customer i intends to buy at day t
CarLineSameBrandit X6: The number of same-line same-brand car models of the car j that the
customer i intends to buy at day t
Model Specification:
Pr( 1) ( )ijt ijtChoice X ??? ? ?
0 1 2 3 4 5 6
7 8 9 10
11
=
*
*
ijt ijt ijt ijt it it it
it it it ijt it
ijt it
X BrandAd ProductAd DeciLevel SpMidSchool SpCollege SpGraduate
SpAge SpBrandTenure SpPassTrain BrandAd SpBrandTenure
BrandAd SpPassTrain
? ? ? ? ? ? ? ?
? ? ? ?
?
? ? ? ? ? ? ?
? ? ? ?
? ? 12 13
14 15 16 17
18 19
* *
ln( ) ln( )
ln( )
ijt it ijt it
jt jt jt j
j j i j t ijt
ProductAd SpBrandTenure ProductAd SpPassTrain
CarLineDiffBrand CarLineSameBrand CarPrice CarDisplacement
CarFuelEconomy CarSeats
? ?
? ? ? ?
? ? ? ? ? ?
?
? ? ? ?
? ? ? ? ? ?
Sample, Dependent (Y) and Independent Variables (X)
Sample: (1) Car-week level data from Jan, 2014 till Jun, 2016;
(2) 2,493 observations from sales of 35 unique car models
Transactionjt Y1: The total number of transactions of car model j on month t
Visitjt Y2: The total number of offline store visits of car model j on month t
TotalBrandAdjt X1: The total number of brand-oriented advertising exposures of car
model j on month t
TotalProductAdjt X2: The total number of product-oriented advertising exposures of
car model j on month t
CarLineDiffBrandjt X3: The number of same-line different-brand car models of the car j
at month t
CarLineSameBrandjt X4: The number of same-line same-brand car models of the car j at
month t
Model Specification:
andln(1 )jt jtTransaction X ??? ? ln( )jt jtVisit X ???
0 1 2 3 4
5 6
7 8
=
* *
*
jt jt jt jt jt
jt jt jt jt
jt jt
X TotalBrandAd TotalProductAd CarLineDiffBrand CarLineSameBrand
TotalBrandAd CarLineDiffBrand TotalProductAd CarLineDiffBrand
TotalBrandAd CarLineSameBrand T
? ? ? ? ? ?
? ?
? ?
? ? ? ? ?
? ?
? ?
9 10 11
12 13 14
*
ln( )
ln( ) ln( )
jt jt
jt jt jt
j j j t jt
otalProductAd CarLineSameBrand
RivalBrandAdSType RivalProductAdSType CarPrice
CarDisplacement CarFuelEconomy CarSeats
? ? ?
? ? ? ? ?
? ? ?
? ? ? ? ?
Results and Findings
Individual-Level Aggregate-Level
Variables (1)
Logit
Choice
(2)
Probit
Choice
BrandAd 0.743*** 0.362***
ProductAd 0.428*** 0.259***
SpBrandTenure -0.002 -0.002
SpPassTrain 0.153*** 0.080***
BrandAd ×
SpBrandTenure
-0.005 -0.003
BrandAd ×
SpPassTrain
-0.098 -0.067
ProductAd ×
SpBrandTenure
-4.19e-04 -8.59e-04
ProductAd ×
SpPassTrain
0.231*** 0.092***
Controls √ √
Constant -10.21*** -4.177***
BIC 7099.215 8359.542
Observations 551,056 551,056
Note: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1
Variables (1)
Ln(1+Transac
tion)
FE
(2)
Ln(1+Transa
ction)
RE
(3)
Ln(Visit)
FE
(4)
Ln(Visit)
RE
TotalBrandAd 1.57e-04 9.86e-04*** 1.52e-03*** 3.02e-03***
TotalProductAd 7.57e-05 5.37e-04*** 8.97e-04*** 1.70e-03***
CarLineDiffBrand -0.011 0.156*** 0.014 0.293***
CarLineSameBrand 0.032 0.098*** 0.477*** 0.751***
TotalBrandAd ×
CarLineDiffBrand
-5.02e-05 -2.50e-04*** -2.70e-04*** -5.80e-04***
TotalProductAd ×
CarLineDiffBrand
1.08e-05 7.82e-06 1.03e-05 -1.17e-05
TotalBrandAd ×
CarLineSameBrand
1.24e-04*** 1.64e-04*** 3.38e-05 -8.32e-06
TotalProductAd ×
CarLineSameBrand
1.51e-05 -1.12e-04*** -2.04e-04*** -4.16e-04***
Controls √ √ √ √
Constant 0.286 14.51*** 3.437*** 25.69***
Overall-R2 0.282 0.532 0.319 0.497
Observations 2,493 2,493 2,493 2,493
Identifications and Robustness
Instrument
Variable
Estimation
Non-
randomly
Assigned
Salesman
Endogeneity
Concern of
Product
Line Length
Simultaneity
Alternative
Model
Hierarchical
Linear
Bayesian
MCMC
Estimation
√ √ √ √ √ √ √
Contributions
? Contribute to the literature on the interdependencies between online
advertising and offline salesman interactions by granularity testing
? Contribute to the literature on the interdependencies between online
advertising strategies and product line management strategies
? Managers should evaluate trade-offs of different advertising strategies, offline
salesman training and product line management

More Related Content

Similar to Online to-offline commerce in automobile industry (20)

The Sizmek_Tech solutions
The Sizmek_Tech solutionsThe Sizmek_Tech solutions
The Sizmek_Tech solutions
Karunakar Ravirala
?
Automotive dyno market
Automotive dyno marketAutomotive dyno market
Automotive dyno market
SanjuTomar4
?
Tools for effective automobile sales
Tools for effective automobile salesTools for effective automobile sales
Tools for effective automobile sales
ashua12
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
Which car fits my life? Mobile.de’s approach to recommendations
Which car fits my life? Mobile.de’s approach to recommendationsWhich car fits my life? Mobile.de’s approach to recommendations
Which car fits my life? Mobile.de’s approach to recommendations
inovex GmbH
?
Strategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Strategic Analysis of Global Low-cost Truck Maket: A Brief SummaryStrategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Strategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Sandeep Kar
?
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
Lucas Schrodt
?
ATA MC&E 2015 Wallace Lau, Frost & Sullivan
ATA MC&E 2015 Wallace Lau, Frost & SullivanATA MC&E 2015 Wallace Lau, Frost & Sullivan
ATA MC&E 2015 Wallace Lau, Frost & Sullivan
Paul Menig
?
3d printing in automobile industry
3d printing in automobile industry3d printing in automobile industry
3d printing in automobile industry
Abhishek Kapoor
?
Car seat covers market 2019 segmentation, application, technology, opportunit...
Car seat covers market 2019 segmentation, application, technology, opportunit...Car seat covers market 2019 segmentation, application, technology, opportunit...
Car seat covers market 2019 segmentation, application, technology, opportunit...
GeetaBajaj4
?
Institutional Presentation - May/17
Institutional Presentation - May/17Institutional Presentation - May/17
Institutional Presentation - May/17
Localiza
?
Presentation on automobiles
Presentation on automobilesPresentation on automobiles
Presentation on automobiles
AIMFirst
?
Biz.101
Biz.101Biz.101
Biz.101
jagan339
?
Sensors for robotic vehicles 2018 report by yole developpement i-micronews
Sensors for robotic vehicles 2018 report by yole developpement i-micronewsSensors for robotic vehicles 2018 report by yole developpement i-micronews
Sensors for robotic vehicles 2018 report by yole developpement i-micronews
Yole Developpement
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
About IAT-2022.02.15.PDF.pdf
About IAT-2022.02.15.PDF.pdfAbout IAT-2022.02.15.PDF.pdf
About IAT-2022.02.15.PDF.pdf
axsis1
?
Japan automotive aftermarket,2027
Japan automotive aftermarket,2027Japan automotive aftermarket,2027
Japan automotive aftermarket,2027
TechSci Research
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
Which car fits my life? - PyData Berlin 2017
Which car fits my life? - PyData Berlin 2017Which car fits my life? - PyData Berlin 2017
Which car fits my life? - PyData Berlin 2017
Florian Wilhelm
?
Tracxn - Smart Cars Startup Landscape
Tracxn - Smart Cars Startup LandscapeTracxn - Smart Cars Startup Landscape
Tracxn - Smart Cars Startup Landscape
Tracxn
?
Automotive dyno market
Automotive dyno marketAutomotive dyno market
Automotive dyno market
SanjuTomar4
?
Tools for effective automobile sales
Tools for effective automobile salesTools for effective automobile sales
Tools for effective automobile sales
ashua12
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
Which car fits my life? Mobile.de’s approach to recommendations
Which car fits my life? Mobile.de’s approach to recommendationsWhich car fits my life? Mobile.de’s approach to recommendations
Which car fits my life? Mobile.de’s approach to recommendations
inovex GmbH
?
Strategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Strategic Analysis of Global Low-cost Truck Maket: A Brief SummaryStrategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Strategic Analysis of Global Low-cost Truck Maket: A Brief Summary
Sandeep Kar
?
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
5-Forces Analysis, S-W-O-T, Strategic Recommendations - Car2Go (2017)
Lucas Schrodt
?
ATA MC&E 2015 Wallace Lau, Frost & Sullivan
ATA MC&E 2015 Wallace Lau, Frost & SullivanATA MC&E 2015 Wallace Lau, Frost & Sullivan
ATA MC&E 2015 Wallace Lau, Frost & Sullivan
Paul Menig
?
3d printing in automobile industry
3d printing in automobile industry3d printing in automobile industry
3d printing in automobile industry
Abhishek Kapoor
?
Car seat covers market 2019 segmentation, application, technology, opportunit...
Car seat covers market 2019 segmentation, application, technology, opportunit...Car seat covers market 2019 segmentation, application, technology, opportunit...
Car seat covers market 2019 segmentation, application, technology, opportunit...
GeetaBajaj4
?
Institutional Presentation - May/17
Institutional Presentation - May/17Institutional Presentation - May/17
Institutional Presentation - May/17
Localiza
?
Presentation on automobiles
Presentation on automobilesPresentation on automobiles
Presentation on automobiles
AIMFirst
?
Sensors for robotic vehicles 2018 report by yole developpement i-micronews
Sensors for robotic vehicles 2018 report by yole developpement i-micronewsSensors for robotic vehicles 2018 report by yole developpement i-micronews
Sensors for robotic vehicles 2018 report by yole developpement i-micronews
Yole Developpement
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
About IAT-2022.02.15.PDF.pdf
About IAT-2022.02.15.PDF.pdfAbout IAT-2022.02.15.PDF.pdf
About IAT-2022.02.15.PDF.pdf
axsis1
?
Japan automotive aftermarket,2027
Japan automotive aftermarket,2027Japan automotive aftermarket,2027
Japan automotive aftermarket,2027
TechSci Research
?
Localiza institucional inglês
Localiza institucional   inglêsLocaliza institucional   inglês
Localiza institucional inglês
Localiza
?
Which car fits my life? - PyData Berlin 2017
Which car fits my life? - PyData Berlin 2017Which car fits my life? - PyData Berlin 2017
Which car fits my life? - PyData Berlin 2017
Florian Wilhelm
?
Tracxn - Smart Cars Startup Landscape
Tracxn - Smart Cars Startup LandscapeTracxn - Smart Cars Startup Landscape
Tracxn - Smart Cars Startup Landscape
Tracxn
?

More from Yunkun Zhao, PhD (8)

28th Workshop on Information Systems and Economics
28th Workshop on Information Systems and Economics28th Workshop on Information Systems and Economics
28th Workshop on Information Systems and Economics
Yunkun Zhao, PhD
?
PhD Thesis_Digital Media Advertising Attribution
PhD Thesis_Digital Media Advertising AttributionPhD Thesis_Digital Media Advertising Attribution
PhD Thesis_Digital Media Advertising Attribution
Yunkun Zhao, PhD
?
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
Yunkun Zhao, PhD
?
SAS Certified Advanced Programmer
SAS Certified Advanced ProgrammerSAS Certified Advanced Programmer
SAS Certified Advanced Programmer
Yunkun Zhao, PhD
?
SAS Certified Base Programmer
SAS Certified Base ProgrammerSAS Certified Base Programmer
SAS Certified Base Programmer
Yunkun Zhao, PhD
?
PhD Thesis Defense by ZhaoYunkun
PhD Thesis Defense by ZhaoYunkunPhD Thesis Defense by ZhaoYunkun
PhD Thesis Defense by ZhaoYunkun
Yunkun Zhao, PhD
?
Teacher Evaluation Report for BT4016 (Tutorial)
Teacher Evaluation Report for BT4016 (Tutorial)Teacher Evaluation Report for BT4016 (Tutorial)
Teacher Evaluation Report for BT4016 (Tutorial)
Yunkun Zhao, PhD
?
Teacher Evaluation Report for BT2101 (Tutorial)
Teacher Evaluation Report for BT2101 (Tutorial)Teacher Evaluation Report for BT2101 (Tutorial)
Teacher Evaluation Report for BT2101 (Tutorial)
Yunkun Zhao, PhD
?
28th Workshop on Information Systems and Economics
28th Workshop on Information Systems and Economics28th Workshop on Information Systems and Economics
28th Workshop on Information Systems and Economics
Yunkun Zhao, PhD
?
PhD Thesis_Digital Media Advertising Attribution
PhD Thesis_Digital Media Advertising AttributionPhD Thesis_Digital Media Advertising Attribution
PhD Thesis_Digital Media Advertising Attribution
Yunkun Zhao, PhD
?
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
SAS Certified Predictive Modeler Using SAS Enterprise Miner 14
Yunkun Zhao, PhD
?
SAS Certified Advanced Programmer
SAS Certified Advanced ProgrammerSAS Certified Advanced Programmer
SAS Certified Advanced Programmer
Yunkun Zhao, PhD
?
SAS Certified Base Programmer
SAS Certified Base ProgrammerSAS Certified Base Programmer
SAS Certified Base Programmer
Yunkun Zhao, PhD
?
PhD Thesis Defense by ZhaoYunkun
PhD Thesis Defense by ZhaoYunkunPhD Thesis Defense by ZhaoYunkun
PhD Thesis Defense by ZhaoYunkun
Yunkun Zhao, PhD
?
Teacher Evaluation Report for BT4016 (Tutorial)
Teacher Evaluation Report for BT4016 (Tutorial)Teacher Evaluation Report for BT4016 (Tutorial)
Teacher Evaluation Report for BT4016 (Tutorial)
Yunkun Zhao, PhD
?
Teacher Evaluation Report for BT2101 (Tutorial)
Teacher Evaluation Report for BT2101 (Tutorial)Teacher Evaluation Report for BT2101 (Tutorial)
Teacher Evaluation Report for BT2101 (Tutorial)
Yunkun Zhao, PhD
?

Recently uploaded (20)

The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
?
Stasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesiaStasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesia
fikrimanurung1
?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
Christine Hemphill
?
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
taqyed
?
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
javiertec21
?
The Role of Christopher Campos Orlando in Sustainability Analytics
The Role of Christopher Campos Orlando in Sustainability AnalyticsThe Role of Christopher Campos Orlando in Sustainability Analytics
The Role of Christopher Campos Orlando in Sustainability Analytics
christophercamposus1
?
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
?
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
suchanadatta3
?
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
?
Data-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptxData-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptx
hfebxtveyjxavhx
?
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
?
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media AudiogahwhwhjwjwjwjjwjwjwhwhwjwhwhwMedia Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
carbsmichael
?
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
?
Stasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesiaStasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesia
fikrimanurung1
?
Rosa_Ivelisse_PublishingCompanyPitch(1).docx
Rosa_Ivelisse_PublishingCompanyPitch(1).docxRosa_Ivelisse_PublishingCompanyPitch(1).docx
Rosa_Ivelisse_PublishingCompanyPitch(1).docx
irramos8843
?
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
?
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
?
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
taqyed
?
The truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptxThe truth behind the numbers: spotting statistical misuse.pptx
The truth behind the numbers: spotting statistical misuse.pptx
andyprosser3
?
Stasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesiaStasiun kernel pabrik kelapa sawit indonesia
Stasiun kernel pabrik kelapa sawit indonesia
fikrimanurung1
?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?AI + Disability. Coded Futures: Better opportunities or biased outcomes?
AI + Disability. Coded Futures: Better opportunities or biased outcomes?
Christine Hemphill
?
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
加拿大成绩单购买原版(鲍颁毕业证书)卡尔加里大学毕业证文凭
taqyed
?
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
5.17 - IntroductionToNeo4j-all狠狠撸s_1_2022_DanMc.pdf
javiertec21
?
The Role of Christopher Campos Orlando in Sustainability Analytics
The Role of Christopher Campos Orlando in Sustainability AnalyticsThe Role of Christopher Campos Orlando in Sustainability Analytics
The Role of Christopher Campos Orlando in Sustainability Analytics
christophercamposus1
?
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
2025-03-03-Philly-AAAI-GoodData-Build Secure RAG Apps With Open LLM
Timothy Spann
?
Kaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI CompetitionsKaggle & Datathons: A Practical Guide to AI Competitions
Kaggle & Datathons: A Practical Guide to AI Competitions
rasheedsrq
?
exampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexampleexample
exampleexampleexampleexampleexampleexampleexampleexample
lembiczkat
?
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
RAGing Against the Literature: LLM-Powered Dataset Mention Extraction-present...
suchanadatta3
?
+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt+data_warehousing_hoffer_edm_pp_ch09.ppt
+data_warehousing_hoffer_edm_pp_ch09.ppt
aaarashsaadati
?
Data-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptxData-Models-in-DBMS-An-Overview.pptx.pptx
Data-Models-in-DBMS-An-Overview.pptx.pptx
hfebxtveyjxavhx
?
CloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdfCloudMonitor - Architecture Audit Review February 2025.pdf
CloudMonitor - Architecture Audit Review February 2025.pdf
Rodney Joyce
?
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media AudiogahwhwhjwjwjwjjwjwjwhwhwjwhwhwMedia Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
Media Audiogahwhwhjwjwjwjjwjwjwhwhwjwhwhw
carbsmichael
?
LESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptxLESSON-2-Synthesizing-Information-PPT.pptx
LESSON-2-Synthesizing-Information-PPT.pptx
trishflores3
?
Stasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesiaStasiun kernel pengolahan kelapa sawit indonesia
Stasiun kernel pengolahan kelapa sawit indonesia
fikrimanurung1
?
Rosa_Ivelisse_PublishingCompanyPitch(1).docx
Rosa_Ivelisse_PublishingCompanyPitch(1).docxRosa_Ivelisse_PublishingCompanyPitch(1).docx
Rosa_Ivelisse_PublishingCompanyPitch(1).docx
irramos8843
?
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo GuruThe Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
The Marketability of Rice Straw Yarn Among Selected Customers of Gantsilyo Guru
kenyoncenteno12
?
A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...A Relative Information Gain-based Query Performance Prediction Framework with...
A Relative Information Gain-based Query Performance Prediction Framework with...
suchanadatta3
?
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
加拿大成绩单购买原版(顿补濒毕业证书)戴尔豪斯大学毕业证文凭
taqyed
?

Online to-offline commerce in automobile industry

  • 1. Cross-Channel Impacts of Online Advertising, Salesforce and Product Line Strategies in O2O Retailing Environments Yunkun Zhao*, Khim Yong Goh* and Liwen Hou** * National University of Singapore, ** Shanghai Jiaotong University Contact Author: mozartkun@gmail.com Motivation Brand Ad Product Line Product Ad Research Objectives and Hypotheses ? Evaluating the impacts of salesman attributes on effectiveness of advertising strategies ? Evaluating the impacts of product line length on effectiveness of advertising strategies H1A: Brand Ad + Salesman Train + Brand Ad + Salesman Tenure + H1B: Product Ad + Salesman Train + Product Ad + Salesman Tenure + H2A: Brand Ad + Length Across Different Brand - H2B: Product Ad + Length Across Different Brand - H2C: Brand Ad + Length Within Same Brand + H2D: Product Ad + Length Within Same Brand - Data Background Data provided by a multi-brand multi-product O2O automobile manufacturer in China, selling 3 brands, 35 models in 1,980 dealership stores throughout China. We have (1) Purchase history, (2) Offline visit records, (3) Automobile information, and (4) Salesman information Individual Level Analysis Aggregate Level Analysis Sample, Dependent (Y) and Independent Variables (X) Sample: (1) Customer-product-day level data from Jan, 2014 till Jun, 2016; (2) 551,056 observations from 524,991 customers Choiceijt Y1: Whether customer i choose to buy product j on day t (=1 yes, =0 no) BrandAdijt X1: Whether customer i is lead by brand-oriented advertising for product j into offline official store to visit at day t ProductAdijt X2: Whether customer i is lead by product-oriented advertising for product j into offline official store to visit at day t SpBrandTenureit X3: The number of months the salesperson who serves customer i at day t has been responsible for the car product j SpPassTrainit X4: Whether the salesperson who serves customer i at day t passes sales training program CarLineDiffBrandit X5: The number of same-line different-brand car models of the car j that the customer i intends to buy at day t CarLineSameBrandit X6: The number of same-line same-brand car models of the car j that the customer i intends to buy at day t Model Specification: Pr( 1) ( )ijt ijtChoice X ??? ? ? 0 1 2 3 4 5 6 7 8 9 10 11 = * * ijt ijt ijt ijt it it it it it it ijt it ijt it X BrandAd ProductAd DeciLevel SpMidSchool SpCollege SpGraduate SpAge SpBrandTenure SpPassTrain BrandAd SpBrandTenure BrandAd SpPassTrain ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 12 13 14 15 16 17 18 19 * * ln( ) ln( ) ln( ) ijt it ijt it jt jt jt j j j i j t ijt ProductAd SpBrandTenure ProductAd SpPassTrain CarLineDiffBrand CarLineSameBrand CarPrice CarDisplacement CarFuelEconomy CarSeats ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Sample, Dependent (Y) and Independent Variables (X) Sample: (1) Car-week level data from Jan, 2014 till Jun, 2016; (2) 2,493 observations from sales of 35 unique car models Transactionjt Y1: The total number of transactions of car model j on month t Visitjt Y2: The total number of offline store visits of car model j on month t TotalBrandAdjt X1: The total number of brand-oriented advertising exposures of car model j on month t TotalProductAdjt X2: The total number of product-oriented advertising exposures of car model j on month t CarLineDiffBrandjt X3: The number of same-line different-brand car models of the car j at month t CarLineSameBrandjt X4: The number of same-line same-brand car models of the car j at month t Model Specification: andln(1 )jt jtTransaction X ??? ? ln( )jt jtVisit X ??? 0 1 2 3 4 5 6 7 8 = * * * jt jt jt jt jt jt jt jt jt jt jt X TotalBrandAd TotalProductAd CarLineDiffBrand CarLineSameBrand TotalBrandAd CarLineDiffBrand TotalProductAd CarLineDiffBrand TotalBrandAd CarLineSameBrand T ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 10 11 12 13 14 * ln( ) ln( ) ln( ) jt jt jt jt jt j j j t jt otalProductAd CarLineSameBrand RivalBrandAdSType RivalProductAdSType CarPrice CarDisplacement CarFuelEconomy CarSeats ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Results and Findings Individual-Level Aggregate-Level Variables (1) Logit Choice (2) Probit Choice BrandAd 0.743*** 0.362*** ProductAd 0.428*** 0.259*** SpBrandTenure -0.002 -0.002 SpPassTrain 0.153*** 0.080*** BrandAd × SpBrandTenure -0.005 -0.003 BrandAd × SpPassTrain -0.098 -0.067 ProductAd × SpBrandTenure -4.19e-04 -8.59e-04 ProductAd × SpPassTrain 0.231*** 0.092*** Controls √ √ Constant -10.21*** -4.177*** BIC 7099.215 8359.542 Observations 551,056 551,056 Note: Standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 Variables (1) Ln(1+Transac tion) FE (2) Ln(1+Transa ction) RE (3) Ln(Visit) FE (4) Ln(Visit) RE TotalBrandAd 1.57e-04 9.86e-04*** 1.52e-03*** 3.02e-03*** TotalProductAd 7.57e-05 5.37e-04*** 8.97e-04*** 1.70e-03*** CarLineDiffBrand -0.011 0.156*** 0.014 0.293*** CarLineSameBrand 0.032 0.098*** 0.477*** 0.751*** TotalBrandAd × CarLineDiffBrand -5.02e-05 -2.50e-04*** -2.70e-04*** -5.80e-04*** TotalProductAd × CarLineDiffBrand 1.08e-05 7.82e-06 1.03e-05 -1.17e-05 TotalBrandAd × CarLineSameBrand 1.24e-04*** 1.64e-04*** 3.38e-05 -8.32e-06 TotalProductAd × CarLineSameBrand 1.51e-05 -1.12e-04*** -2.04e-04*** -4.16e-04*** Controls √ √ √ √ Constant 0.286 14.51*** 3.437*** 25.69*** Overall-R2 0.282 0.532 0.319 0.497 Observations 2,493 2,493 2,493 2,493 Identifications and Robustness Instrument Variable Estimation Non- randomly Assigned Salesman Endogeneity Concern of Product Line Length Simultaneity Alternative Model Hierarchical Linear Bayesian MCMC Estimation √ √ √ √ √ √ √ Contributions ? Contribute to the literature on the interdependencies between online advertising and offline salesman interactions by granularity testing ? Contribute to the literature on the interdependencies between online advertising strategies and product line management strategies ? Managers should evaluate trade-offs of different advertising strategies, offline salesman training and product line management