The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to simulate sampling from these distributions and compare the simulated distributions to their theoretical probability density functions.
This document discusses generative adversarial networks (GANs) and their relationship to reinforcement learning. It begins with an introduction to GANs, explaining how they can generate images without explicitly defining a probability distribution by using an adversarial training process. The second half discusses how GANs are related to actor-critic models and inverse reinforcement learning in reinforcement learning. It explains how GANs can be viewed as training a generator to fool a discriminator, similar to how policies are trained in reinforcement learning.
Two sentences are tokenized and encoded by a BERT model. The first sentence describes two kids playing with a green crocodile float in a swimming pool. The second sentence describes two kids pushing an inflatable crocodile around in a pool. The tokenized sentences are passed through the BERT model, which outputs the encoded representations of the token sequences.
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include:
1. Masked prediction tasks that predict masked patches of the input image.
2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image.
3. Self-distillation methods like DINO that distill a teacher ViT into a student ViT using different views of the same image.
4. Hybrid approaches that combine masked prediction with self-distillation, such as iBOT.
This document summarizes recent advances in single image super-resolution (SISR) using deep learning methods. It discusses early SISR networks like SRCNN, VDSR and ESPCN. SRResNet is presented as a baseline method, incorporating residual blocks and pixel shuffle upsampling. SRGAN and EDSR are also introduced, with EDSR achieving state-of-the-art PSNR results. The relationship between reconstruction loss, perceptual quality and distortion is examined. While PSNR improves yearly, a perception-distortion tradeoff remains. Developments are ongoing to produce outputs that are both accurately restored and naturally perceived.
Several recent papers have explored self-supervised learning methods for vision transformers (ViT). Key approaches include:
1. Masked prediction tasks that predict masked patches of the input image.
2. Contrastive learning using techniques like MoCo to learn representations by contrasting augmented views of the same image.
3. Self-distillation methods like DINO that distill a teacher ViT into a student ViT using different views of the same image.
4. Hybrid approaches that combine masked prediction with self-distillation, such as iBOT.
This document summarizes recent advances in single image super-resolution (SISR) using deep learning methods. It discusses early SISR networks like SRCNN, VDSR and ESPCN. SRResNet is presented as a baseline method, incorporating residual blocks and pixel shuffle upsampling. SRGAN and EDSR are also introduced, with EDSR achieving state-of-the-art PSNR results. The relationship between reconstruction loss, perceptual quality and distortion is examined. While PSNR improves yearly, a perception-distortion tradeoff remains. Developments are ongoing to produce outputs that are both accurately restored and naturally perceived.
- The document discusses estimating structured vector autoregressive (VAR) models from time series data.
- A VAR model of order d is defined as xt = A1xt-1 + ... + Adxt-d + εt, where xt is a p-dimensional time series, Ak are parameter matrices, and εt is noise.
- The document proposes regularizing the VAR model estimation problem to promote structured sparsity in the parameter matrices Ak. This involves transforming the model into a linear regression form and applying group lasso or fused lasso regularization.
This document summarizes Pixel Recurrent Neural Networks, proposed models for generative image modeling including PixelRNN and PixelCNN. PixelRNN uses row LSTMs or diagonal bi-LSTMs to capture pixel dependencies while PixelCNN replaces the unbounded dependency with a large bounded receptive field, turning it into a pixel-level classification problem. The models are optimized using techniques like residual connections and masked convolutions. Experiments on MNIST, CIFAR-10, and ImageNet demonstrate state-of-the-art results in log-likelihood and capability of image completion.
1. The document discusses probabilistic modeling and variational inference. It introduces concepts like Bayes' rule, marginalization, and conditioning.
2. An equation for the evidence lower bound is derived, which decomposes the log likelihood of data into the Kullback-Leibler divergence between an approximate and true posterior plus an expected log likelihood term.
3. Variational autoencoders are discussed, where the approximate posterior is parameterized by a neural network and optimized to maximize the evidence lower bound. Latent variables are modeled as Gaussian distributions.
The document details the development and features of Chainer v2.0.0a1, emphasizing its role as a pioneer in dynamic graph frameworks since its inception in 2015. Key updates include the separation of CuPy into its own project, improvements in configuration handling, and removal of deprecated APIs, along with plans for future releases. Various enhancements are introduced to streamline training modes and optimize parameter management in the framework.
FaceBook のAIチームが研究の発表論文である "Memory networks"とその拡張である"Towards AI-complete question answering: A set of prerequisite toy tasks."を簡単に紹介します。
[1] Weston, J., Chopra, S., and Bordes, A. Memory networks. In International Conference on Learning Representations (ICLR), 2015a.
[2] Weston, J., Bordes, A., Chopra, S., and Mikolov, T. Towards AI-complete question answering: A set of prerequisite toy tasks. arXiv preprint: 1502.05698, 2015b.
2019年4月現在の最新状況を踏まえた資料更新です。
確率的LUTモデルの追加とBinaryBrain version3 の公開が主な内容です。
English Version
/ryuz88/lutnetwork-revision2-english-version
BinaryBrain
https://github.com/ryuz/BinaryBrain
The document discusses the Chainer v3.0.0 release and updates on the CuPy v2.0.0, highlighting key features such as double backpropagation support in Chainer and new functionalities introduced in CuPy for sparse matrices and complex numbers. It mentions backward compatibility concerns and the introduction of new-style functions with improved efficiency. Future releases are also briefly outlined, noting an updated release policy and upcoming versions scheduled for release.
Chainer v2.0.0 was released on June 1, 2017, introducing significant changes including breaking backward compatibility and a cleaner API. Key updates include the separation of CuPy into its own repository, a new configuration for training modes, and features for memory optimization and advanced indexing. Future plans include enhancing backpropagation capabilities and improving documentation and testing, with discussions being held publicly on Chainer's Slack channels.
Learning stochastic neural networks with ChainerSeiya Tokui
?
The document discusses learning stochastic neural networks using the Chainer framework, focusing on the computation of gradients through stochastic units and various learning methods. It highlights the use of the reparameterization trick for Gaussian units and likelihood-ratio methods for Bernoulli units, emphasizing their implementation in Chainer. Additionally, it presents examples of variational autoencoders and sigmoid belief networks, alongside experimentation notes to optimize learning and reduce gradient variance.
The document introduces Chainer, an open-source framework for neural networks, highlighting its core concepts such as computational graphs, automatic differentiation, and backpropagation. It discusses the features of Chainer version 1.11, including dynamic computational graphs, model abstractions, and built-in datasets and optimizers. Additionally, it provides an example of using Chainer with the MNIST dataset for classification tasks, illustrating the setup of models, training loops, and performance evaluation.
The document outlines the updates from Chainer versions v1.8.0 to v1.10.0, highlighting new features such as improved caffefunction support, weight initialization capabilities, and enhanced ndarray handling. It discusses the introduction of new functions and links, modifications to existing functionalities, and plans for more frequent minor releases due to a backlog of pull requests. Future updates are planned, including a major version release aimed at enhancing performance and usability through various improvements.
Differences of Deep Learning FrameworksSeiya Tokui
?
This tutorial provides an overview of deep learning frameworks, focusing on the design choices that differentiate them, including how neural networks are defined and how computational graphs are constructed. It highlights several frameworks like TensorFlow, Theano, and PyTorch, discussing their strengths and weaknesses in relation to performance and ease of use. The conclusion emphasizes the importance of selecting a framework that aligns with user preferences and requirements for deep learning tasks.
Chainer is a flexible deep learning framework designed for researchers, allowing on-the-fly construction of computational graphs during forward computations, which facilitates diverse iteration and easier debugging. It supports device-agnostic coding through numpy and cupy and enables the creation of custom kernels, enhancing usability. Additionally, the framework provides tools like link and chain for building reusable components of neural networks, including functionalities for serialization.
This document outlines Chainer's development plans, including past releases from versions 1.0 to 1.5, apologies about installation complications, and new policies and release schedules going forward from version 1.6. Key points include making installation easier, adding backwards compatibility, releasing minor versions every 6 weeks and revision versions every 2 weeks, and potential future features like profiling, debugging tools, and isolating CuPy.
1) The document discusses the development history and planned features of Chainer, a deep learning framework.
2) It describes Chainer's transition to a new model structure using Links and Chains to define networks in a more modular and reusable way.
3) The new structure will allow for easier saving, loading, and composition of network definitions compared to the previous FunctionSet/Optimizer approach.
Introduction to Chainer: A Flexible Framework for Deep LearningSeiya Tokui
?
Chainer is a powerful and flexible deep learning framework that utilizes a define-by-run paradigm, allowing users to write forward computations as regular Python code and enabling dynamic graph changes. Key features include automatic differentiation, multi-GPU support, and an intuitive handling of neural network layers and optimizers. It is actively developed with plans for biweekly updates, and a repository is available for users to access and contribute to.
7. 提案モデルの基本:制限された結合
? 同じ spatial size のまま深くしていく (チャンネルは RGB のグ
ループに分割) が、context 外からの結合はなくす (masking)
? 2 層目以降では同じ位置の同じチャンネルの入力は見ても良い
…
R
G
B
R features
G features
B features
R features
G features
B features
1 層目
(mask A)
2 層目以降
(mask B)
出力
(mask B)
R
G
B
cf. MADE [Germain+, ICML’15] 7